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I. INTRODUCTION 

A. Eroblem Description 

Modern aircraft and missiles operate over an extremely wide range of 

conditions and their dynamics or response characteristics vary widely. 

For this reason, a control system which gives a stable well behaved 

response for low speeds and low altitudes may not be satisfactory at 

high speeds and/or high altitudes. In fact, the system could be completely 

unstable. 

This type of problem has been solved in the past by control systems 

in which the gains of the various feedback loops are changed in response 

to signals generated by a computer. In effect, the computer determines 

altitude and velocity and then adjusts the control system gains to some 

predetermined value which should give optimum characteristics. This is 

essentially an "open loop" type of operation. That is, if the pre­

determined gains are not correct and the system should become unstable, 

there is no feedback mechanism to allow further correction. 

An additional complication to the problem appears in large space 

vehicles or boosters, and in advanced aircraft such as the XB-70. In 

these vehicles, the structure cannot be considered a rigid body. Bending 

of the body about the transverse axes can be sensed by rate gyros. This 

signal from the gyros is fed into the control system along with the rigid 

body motion of the vehicle and can result in an instability at the 

natural frequency of the structure. Furthermore, the frequency and 

amplitude of the body bending varies with flight conditions and flight 

time. That is, the amount of mass (fuel) will change during the flight 
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and hence the natural freq.uency and damping of any resonant mode must be 

expected to change. 

In addition to these problems there are many cases, particularly in 

experimental vehicles, in which the exact dynamic characteristics are not 

known and cannot be predicted with any reliability. The X-15 and the 

X^JO.are two examples of this. In these cases, attempts to change the 

gains in the flight control system while in operation are not 

satisfactory. 

B. Adaptive Control Systems 

Many of the problems described above are solved, at least to a large 

extent, by the use of adaptive control techniq.ues. Adaptive control 

differs from ordinary gain changing in that adjustments are made on the 

basis of the performance of the system itself as it is operating, and not 

on the basis of measurements of some external phenomena such as altitude 

or velocity. 

One of the simplest and most successful techniques used to date was 

developed by Minneapolis-Honeywe 11 (l). This technique is further 

described in a M.S. Thesis by R, C. Hendrick (2). It has been used with 

good results on the X-I5. In the Honeywell system, a controller is 

designed such that there are a total of three more poles than zeros in 

the overall open loop transfer function. The compensation is designed so 

that for some very high gain, all but two of the poles are well into the 

left half plane, and two complex poles are approaching the imaginary axis 

at a frequency well above that of the aircraft response. See Figure 1. 

The response of the system is extremely rapid so that input signals must 
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Figure 1. Root locus of high gain adaptive control system 
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"be filtered to prevent excessive g-force buildup, and prevent damage to 

the structure. To ensure that the gain is held at a sufficiently high 

level without allowing the two complex poles to cross into the right half 

plane, a gain changing device must be used. A bandpass filter tuned to 

the natural frequency of the complex poles detects the buildup of 

oscillations. When the amplitude becomes too large, the gain is reduced. 

If no oscillation at all appears, the gain is slowly increased. The 

result is a continuous, small oscillation in the system gain, and a 

small limit cycle in the system output at the frequency of the complex 

poles. A block diagram of the Honeywell High Gain Adaptive Control 

system (2) is shown in Figure 2. 

Another system, which uses a variation of the Honeywell technique, 

has been developed by General Electric (3). In this system the two 

complex poles are not allowed to reach the imaginary axis. The sensing 

for gain setting is accomplished by noting the presence of signals in 

the output at the natural frequency of the complex poles. As the gain is 

varied, the frequency as well as the damping of this pair of poles will 

change. The gain is adjusted to keep these poles at the same frequency 

and therefore nearly the same position in the s-plane. The closed loop 

system then has effectively the same characteristics as the Honeywell 

system except there is no low amplitude oscillation or limit cycle in the 

output of this system. 

In practice, this system is somewhat more sensitive to noise and 

wind gusts than the Honeywell system and has not been too satisfactory in 

operation. 
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The two systems described here are not satisfactory for the control 

of missiles and aircraft when body bending cannot be ignored. Figure 3 

is the pole-zero plot in the s-plane of the transfer function describing 

the pitch response of a flexible missile to control surface deflections. 

Only the first two bending modes are indicated since higher order modes 

are usually very small in amplitude. Since the body bending poles are 

so close to the imaginary axis, any high gain system will have stability 

problems unless some method is found to control the motion of these poles. 

From the mode shapes shown in Figure h it is apparent that the 

amount of body bending sensed by the gyro depends upon the position of 

the gyro with respect to the node. If the gyro is at position A, there 

will be relatively large body bending signals present. If the gyro is 

at position C, there will also be large signals, but l80° out of phase 

with the signals picked up at A. At B there will be relatively little 

signal sensed for the second mode and none for the first mode. 

Unfortunately, this node shifts during flight, and even if it were 

stationary its position cannot be predicted with any accuracy. For this 

reason, attempts to eliminate the first bending mode by placing the gyro 

at the correct location are not practicable. 

Several methods have been proposed to overcome this problem. 

Minneapolis-Honeywell has developed a so-called gyro-blender technique 

which effectively reduces the bending mode signal (4). In this system 

(see Figure 5) two gyroscopes are used. One is placed well ahead of the 

node and one well behind. The output of the two gyros are added and 

their gains adjusted. • Since the two bending signals are l80° out of 

phase they are effectively canceled. As the node position changes, 
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a filter and detector will detect the presence of the bending mode 

frequency in the blended signal, and adjust the gains to drive this 

unwanted signal to zero. This method can be used to eliminate one mode, 

but since the node for the second bending mode will not necessarily be 

near that of the first mode, it will not eliminate both bending signals. 

This is usually not too much of a problem, since the second mode can 

generally be kept stable more easily than the first mode. 

A similar effect can be obtained using a band rejection filter (5). 

In this case, however, the parameters of the filter must be varied so 

that the rejection band will track the bending mode frequency. 

Another method which has been discussed in the literature involves 

the use of a "synthetic" control signal (6). The actual feedback signal 

from the sensors is used only to determine the characteristics of the 

"synthetic" signal. The rigid body dynamics are usually approximated 

as a second order system and the frequency and damping are adjusted to 

give a least square fit with the actual feedback signal. This requires 

a digital computer with a fairly high speed since these computations must 

be done in real time. The resulting damped sinusoid is then used to 

actuate the control devices and maintain control of the vehicle. 

All of the techniques discussed except the last- one make use of 

some sort of identification of the system characteristics. In the 

Honeywell and General Electric high gain systems the critical gain is 

determined so that the gain can be set accordingly. In the gyro blender, 

the system effectively finds the node position, and in the band rejection 

filter, the mode frequency must be found. 
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The technique which was investigated is similar to these well known 

techniques in that it is necessary to determine the position of the poles 

characteristic of the first body bending mode. When this identification 

is accomplished, then the adaptive characteristic of the system,will hold 

the pole in the proper position with respect to the compensation zero. 

This is accomplished by Smythe et al. (5) by moving the zero position. 

The technique which is the subject of this dissertation does not move the 

zero, but rather moves the pole associated with the first bending mode. 

This is accomplished by varying the sampling rate. 

C. Description of the Sampled-Data Adaptive System 

Advances in the state-of-the-art are continually making digital 

computers more attractive for flight control systems. This is 

particularly true for large missiles and. boosters since the digital 

computer is already present for the guidance system and can be designed 

to include the flight control functions with very little additional 

hardware. 

To understand the operation of the digital adaptive control system 

which was investigated, consider the complex pair of poles in the 

Z-plane in Figure 6 as being the first bending mode poles. If the poles 

are at the positions designated 1, 1', and compensation zeros are added 

as shown, then a root locus plot might be made which would indicate that 

the poles will never move outside the unit circle. (Note that a locus 

such as this would be obtained if other poles and zeros for other bending 

modes, rigid body dynamics etc. were included. These have been omitted 

in Figure 6 for the sake of clarity.) 
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Figure 6.. Bending mode poles in the Z-plane 

/ 
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Assume that the bending mode poles move to positions 2, 2' due to 

changes in fuel load, dynamic pressure, etc., and the compensation 

zeros remain fixed. Then the root locus will have quite a different 

shape as shown in Figure 6. Since the locus is outside the unit circle, 

the system will be unstable for any other than very high or very low 

values of gain. In the majority of control systems, the gain setting 

will be determined by other factors such as error specifications or 

rigid body stability as in the Honeywell adaptive system. (The system 

investigated might be used in conjunction with such a high gain system.) 

Since the gain must be set to meet other requirements, the bending mode 

can't be kept stable by gain adjustment. The method most frequently 

suggested is to change the compensation zero location. This is the 

method of Smythe et al. (5) and Prince (4), but is not the method 

described here. 

The pole positions in the Z-plane are given by the zeros of the 

expression 

- 2 Z cos w^T + e"'^^ (l) 

where and 0! are defined in the time function e sin co^t, and T is 

the sampling period of the sampled data system. The zeros of this 

polynomial are 

Z = e"°^[cos m^T ± j sin cu^T] = (2) 

If 05 is small, which is the case for a lightly damped characteristic 

such as will describe the body bending modes, and if is relatively 

large, then changes in T will result in motion of the body bending mode 
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pole on a path which is nearly a circle with its center at the origin of 

the Z-plane. In this case then, motion of the body bending pole from 

positions 1, 1' to 2, 2' in Figure 6 can be compensated for by reducing 

T by the appropriate amount. 

This change in T will also change the positions of the rigid body 

poles and the other bending mode poles. In the case of the rigid body 

poles, will be small enough so that the change in position will not 

be troublesome. In the case of the poles corresponding to the second and 

third bending modes, their characteristics are such that they can usually 

be kept stable over a fairly wide range of T. 

D. Process Identification 

In order to properly adjust the value of T, the sampling interval, 

there must be some means of determining the position of the poles in the 

Z-plane. The identification of the pole positions in the Z-plane (or in 

the s-plane) is usually referred to as process identification. In the 

case of sample-data systems this is not a difficult theoretical problem. 

The pulse transfer function of any process under investigation may 

be written in the form 

Y(Z) a + a, z'^ + . . . + a z'^ 
= ° ^ = G(z) (3) 

X(z) b^ + b^ z + . . . + b^ z 

The process identification problem is then that of evaluating the 

coefficients a^, a^ • . . a^, b^, b^ - « - b^. The assumption may.be 

made that a^ is equal to zero since no physical system will respond 

instantaneously. Furthermore, b^ may be set equal to unity without 
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loss of generality. Then 

Y(z) = (A^ z~^ + ag z"^ + • • « A^ z X(z) 

- (b^ z"^ + bg z"^ + . • • b^ z'") Y(z) (4) 

Since z"" denotes a delay of n sample periods, the inverse z-trans-

form gives the output at the m^^ sample period as 

Y(mT) = a^ X ([m-l]T) + • • • + a^ X ([m-n]T) 

- b^Y ([m-l]T) - bgY ([m-2]T) - . • • 

- b^Y-trm-n]T) (5) 

The expressions for the output at the (m + l)^^ sample period, 

Y ([m + 1]T), and succeeding sample periods may also be written in a 

similar fashion. When enough simultaneous equations have been obtained 

it is possible to solve for all of the unknown coefficients (a^^, 

ag • • • a^, b^, bg . • . b^) of the pulse transfer function. This will 

obviously require 2n equations, and is the simplest identification 

technique. It is assumed here and in the following work that the orders 

of numerator and denominator are both known. 

This approach has the very serious disadvantage of being extremely 

sensitive to noise and to inaccuracies in the measurement of the output 

and input signals X(kT) and Y(kT). To eliminate, or at least to 

minimize, the effects of noise in the system, correlation functions are 

often employed in process identification (?). These techniques make use 

of the fact that the ratio of various correlation functions is equal to 

the pulse transfer function. For example, if = G(z), then 
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0 (z) 0 (z) 

where 0 is the cross spectral function and 0 the spectral function, 
^xy XX 

Also, 

0,.r,r(z) 

where w is some function which correlates with both the input and output. 

The technique investigated here, however, does not rely on the 

calculation of correlation functions but, in effect, uses a least square 

smoothing approach. The equations describing the output are rewritten as 

F = a^ X ([m-l]T) + ag X ([m-2]T) + • • • + a^ X ([m-n]T) 

- Y (ml) - b^Y ([m-1]) - b^Y ([m-2]T) - . . . 

- b^Y ([m-n]T) (8) 

If the coefficients are known exactly, then F = 0. In general, 

noise and errors will be such that F ̂  0. To minimize F, both sides of 

the equation are squared. A large number of these equations may be 

written and summed to give the single equation 

i P i 
H = E F = 2 [a X ([m-l]T) + &« X ([m-2]T) + • • -

m=l m=l 

+ a^ X ([m-n]T) - Y (ml) - b^Y ([m-1]) 

- . . . - b^Y ([m-n]T)]^ (9) 

H must now be minimized by finding the best set of coefficients. 

This is done by taking partial derivatives of H with respect to the 2n 

unknown coefficients and setting these derivatives equal to zero. This 
I 
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gives 2n simultaneous equations in 2n unknowns which can be solved to 

find the set of coefficients which best fit the input and output data. 

By summing a fairly large number of equations to get the function H, the 

effects of random noise are greatly reduced. 

After cancellation and simplification, the equations are as shown in 

Equation (lO), page l8. The summation terms in the matrices may be 

considered as good approximations to correlation functions if a large 

number of term are summed, that is, if i is a large number. This is 

apparent if the summation takes place over a large enough number of terms 

so as to approximate the usual integration in the correlation function. 

In that case, the equations may.be rewritten in terms of correlation 

functions as shown in Equation (U), page 22, with the computation being 

simplified. This then reduces to the technique discussed by Tou (7). 

If a relatively small number of terms are summed, significant errors may 

result when Equation (ll) is used. For example, the difference between 

S ([m-l]T) and E ([m-2]T), may be significant even though both 
m=l m=l 

of these terms have been replaced by in the correlation function 

equations. Since much emphasis must be placed on the speed with which 

the identification can be performed, it is desirable to make i as small 

as possible. Therefore, in the work done in this investigation the 

technique has not used correlation functions but the least squares fit 

for the input and output data. 
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^^[2T] • • • 0^[(m-l)T] 0^[O] 

0j(n-2)I] 

0j^[(n-3)T] *xx[0] «^[+Cn-1)T] 

0%y[(n-l)l] 

Equation 11 (Continued) 
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Equation 11 (Continued) 
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II. EXEERIMSmL im/ESTIGATION OF SAMELED-

MTA PROCESS IDENTIFICATION 

An experimental investigation of the least-squares process 

identification"technique described earlier was-undertaken as part of 

this project. The preliminary work was done on a second order system as 

shown in Figure 7 in order to simplify the computation. The initial 

investigation was carried out without any feedback, but with noise 

added to the output. The results of the identification were then com­

pared with the results obtained by simply taking 2n sets of data and 

solving for the 2n unknown coefficients. The results are shown in 

Figures 8a and 8b and Figures ^a. and 9^ • Ten identifications were made 

for each technique for each of two noise levels. The figures show that 

the least square technique gives substantially better accuracy than the 

solution of the set of 2n equations even though the noise level was 

from five to ten times as great. The least squares results were 

obtained by summing twenty equations to form the matrices. (See 

Appendix B. ) 

The next step in the experimental investigation was to determine how 

well the technique would work if there was a closed feedback loop and 

noise was allowed to circulate around the loop. The closed loop system 

shown in Figure 10 was simulated digitally. (See Appendix A.) The 

input to the closed loop was supplied by a random number generator. The 

noise, which was added to the output and fed back around the loop, was 

also supplied by a random number generator. It was found that this 

configuration, i.e. with the added noise circulating around the loop, 
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NOISE 

Y(Z) 
x(z) SECOND ORDER 

SAMPIIED-DATA SYSTEM 

Figure 7. System used in initial process identification work 
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"1.0 -.8 -«6 -.4 -.S 0 .2 «6 ,8 1, 

Figure 8a, Process identification results using 2n equations 
(noise - 2$ of input) 

1.0 

— ,8 

- -  .6 

M 

. 2  

—h—I 

Figure 8b, Process identification results using 2n equations 
(noise - of input Note: one pair of poles 
off scale at l,8l + jl.2) 



www.manaraa.com

29 

1.0 

1.0 

Figure 9a. Process identification results using least squares 
technique (noise - 5^ of input) 

1.0 

1.0 

Figure 9b. Process identification results using least squares Process identification results 
technique (noise - 10% of input) 
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NOISE 

DIGITAL COMPENSATION SYSTEM TO BE IDENTIFIED ' 

Y(nT) 
+ NOISE 

X(nT) INPUT 

(z + .l)(z - 1.0) 

(z + .919) 

Figure 10, Closed loop system used in procès^ identification work 
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gave the greatest errors in the identification. 

Data were obtained for twelve different pole locations in the 

Z-plane. Figures 11 through 3^1 show the results of the identification 

runs. In each case two different noise levels were used, and twenty 

equations were summed in the matrices for each run. Ten runs were made 

for each pole position and noise level. 

From these figures it appears that fair accuracy can be obtained 

for reasonably modest noise levels if the system is lightly damped. This 

is indicated by the amount of scattering of the solutions in the Z-plane. 

The scattering is considerably reduced for pole locations near the unit 

circle. This is true except for the systems described in Figures 29 

through 3^ in which the pole is approaching the negative real axis in the 

Z-plane. The large amount of scattering in these cases is not too 

surprising considering that the poles on the negative real axis 

correspond to a system with a natural frequency of one-half the sampling 

frequency. 

The conclusion drawn from these data is that the identification 

process will give reasonable results for modest amounts of noise if the 

poles are near the unit circle, but not when the frequency is close to 

the half sampling frequency. Since the body bending response of a 

missile is very lightly damped, and since the sampling frequency can be 

selected at will, the technique appears to have some merit for the 

adaptive control of flexible airframes. 

The increased accuracy for poles near the unit circle can be 

explained in terms of the signal-to-noise ratio in the output. For a 
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-1 1.0 • • 

Figure 11, Process Identification results 
(noise level - 5^ of Input) 

.. .k 

-- .2 

1 1.0 

Figure 12. Process Identification results 
(noise level - 10^ of input) 
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1.0 • • 

Figure 13. Process identification results 
(noise level - % of input) 

1.0 

— * » 6 

-1.0 1.0 

Figure l4. Process identification results 
(noise level - 10^ of input) 

) 
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Figure 15, Process identification results 
poles at .25 i j .20 (noise 
level - % of input Note: poles 
off scale at 3.3, 3.85 and 20.9^) 

o 
1.0 0 -1.0 

Figure 16. Process identification results 
poles at 0.25 + j .20 (noise 
level - 10% of input) 
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.6  .h 6 8 .h 0 . 2  2 1. 

Figure 17. Process identification results 
poles at 0.3 + 0.925 (noise 
level - % of input) 

1.0 

Figure l8. Process identification results 
poles at 0.3 + j 0.925 (noise 
level - 10^ of input) 
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1.0 

6 h 6 .8 . 4  - . 2  8 0 -1.0 2 1.0 

Figure 19. Process identification results 
poles at 0.25 + d -7 (noise 
level - % of input 

1.0 

- - . 8  

1.0 

Figure 20. Process identification results 
poles at 0.25 + J 0.7 (noise 
level - 10% of input) 
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1.0-

ocf-ocr> 
1.0 

Figure 21. Process identification results 
poles at 0.1 + j 0.3 (noise 
level - % of input 

1.0 

. . . 6  

1 1.0 

Figure 22. Process identification results 
poles at 0.1 + j 0.3 (noise 
level - IQfjo of input) 
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1.0 

oo 
8 .k 6 6 k 1.0 8 0 2 2 1.0 

Figure 23. Process identification results 
poles at - .3 + d 0.975 (noise 
level - % of input) 

1.0 

8 6 6 k 8 1.0 0 2 .2  

Figure 2k. Process identification results 
poles at - 0.3 + j 0.975 
(noise level - 10^ of input) 
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1.0 

" "  . 2  

o 

1 1.0 

Figure 25• Process identification results 
poles at - 0.25 + j 0.7 (noise 
level - 5^ of input) 

1.0 

--  .8 

o 
1 1.0 

Figure 26. Process identification results 
poles at - 0,25 ± j 0.7 (noise 
level - 10^ of input) 
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Figure 27» Process identification results 
poles at - 0.15 + j 0.25 
(noise level - % of input) 

1.0 

- - . 8  

• - .6 

--.2 

o-»»{xx?)<l IP I xoJ 
1 1.0 12 

Figure 28. Process identification results 
poles at - 0.15 + j 0.25 (noise 
level - yyfo of input) 
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Figure 29. Process identification results 
poles at - 0.8 _+ j .55 (noise 
level - 5^9 of input) 

1.0 

XX 

6 8 .h k 6 1.0 8 0 2 2 1.0 

Figure 30. Process identification results 
poles at - 0.8 + J .55 (noise 
level - l<yfo of Tnput) 
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Figure 31. Process identification results 
poles at - 0.5 + j 0,3 (noise 
level - % of input) 
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, 6  

-1 .0  - .8  - .6  - .k  - .2  0  .2  .4  .6  

Figure 32. Process identification results 
poles at - 0.5 + j 0.3 (noise-
level - 10^ of input) 
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1.0 

--.4 

1.0 

Figure 33' Process Identification results 
poles at - 0.25 + J 0,15 (noise 
level - 3lo of input) 

1.0 

- - . 8  

- -.6 

1.0 

Figure 3^' Process identification results 
poles at - 0.25 + J 0.15 (noise 
level - 10% of input) 
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lightly damped system the output signal at the natural frequency will 

be greater than that for a heavily damped system. Since the noise that 

is introduced is evenly distributed over the frequency range, the signal-

to-noise ratio at the natural frequency will be greater for the lightly 

damped system. 

To give a more realistic assessment of the value of this 

identification method, the Z-transforms of the transfer functions of a 

typical missile were obtained (8). These transfer functions are not 

applicable to a specific missile but might be considered as typical of 

a medium range research missile. These transfer functions were used in 

an investigation carried out by Minneapolis-Honeywell Aeronautical 

Systems Division, and include the effect of the Honeywell "gyro-blender". 

To eliminate the effects of the gyro-blender it was necessary to change 

the positions of the zeros associated with the bending modes. The 

positions chosen for the zeros would be more typical for a fixed 

gyroscope location. In order to emphasize the problem of changing 

bending frequencies, the poles associated with the bending modes were 

also altered. This last change is such as to make the control problem 

more difficult, but the adaptive system described here still gives 

good results. Finally, the third bending mode was dropped in order to 

simplify the computation and conserve digital computer time in the 

investigation. 

This transfer function, along with the compensation actually used 

in the investigation of the adaptive technique (see Section III), was 

-simulated as described in Appendix A. The results of the identification 
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runs are shown in Figures 35 throu^ 38 • The accuracy obtained for these 

cases is considerably reduced for the first bending mode but the pole 

location for the second bending mode was located very accurately in all 

cases. This again can be explained "in terms of the signal-to-noise ratio 

in the output. The first bending mode is accompanied by a zero in the 

airframe transfer function which is a result of the location of the 

gyroscope near the bending node. As a result, the residue of this pole 

is smaller than that of the second bending mode and the output signal at 

that natural frequency is reduced. This results in a smaller signal-to-

noise ratio in the output at the first bending mode frequency. 

Figures 35 throu^ 38 also show the increased accuracy that can be 

obtained by summing a larger number of terms in the matrices. 

From these data it appears that reasonable accuracy can be obtained 

if a large number of equations is summed and if the gyroscope location 

is selected with more care. 
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Figure 35» Process identification results 60 equations 
summed for each matrix (noise level - 2,0% 
of input) 
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Figure 36. Process identification results 100 equations 
summed for each matrix (noise level - 2.0% 
of input) 
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Figure 37. Process identification results 60 equations 
summed for each matrix (noise level 3io of 
input) 
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1.0 1 

Figure 38. Process identification results 100 eq[uations 
summed for each matrix (noise level - 5^ of 
input) 
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III. VERIFICATION OF ADAPTATION BY VARIATION OF 

SAMRLOTG BATE 

To verify the adaptive characteristics of this control system, 

transfer functions for three flight conditions of a typical flexible 

missile were used (8). The transfer functions in the s-plane are 

tabulated below. 

Table 1. 8-plane transfer functions 

Flight Condition , Transfer Function 

A (Launch) 
(s - 1 ± .1 13)(s + 4 i ,1 20) 
s(s + .2 ± J 20)(s + .5 ± j 45) 

B (Maximum 
dynamic 
pressure) 

is + .15)(s + .5 ± ,i 30)(s + .02 ± .1 35) 
(s + .2 ± j 2.0)(s + .3 ± J 22)(s + .7 ± Ô 54) 

C (Burnout -
maximum 
altitude and 
velocity) 

(s + .02)(s + .3 ± ,i 20)(s + .8 ± j 4o) 
(s + .04 ± j 1.4) (s + .25 ± j 25) (s + .6 ± j 60) 

As stated in Part II, these transfer functions have been modified 

slightly to represent a more optimum gyroscope placement and to 

emphasize the change in bending mode frequency with flight conditions. In 

order to determine the effect of variation in sampling rate, the 

Z-transforms of these functions, preceded by a zero order hold function, 

were obtained for several sampling intervals. 
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The choice of sampling rates was dictated by two factors. First, 

it was desired to place the poles associated with the first bending mode 

in the most advantageous region of the Z-plane from the standpoint of 

identification accuracy. Second, it was necessary to have the poles move 

past the compensation zero as the sampling rate changed. In actual 

practice, pole locations in the Z-plane were chosen and from the 

natural frequency in the s-plane the appropriate sampling interval was 

•calculated. These Z-transforma are tabulated below. 

Table 2. Z-plane transfer functions 

oSdSion IrtSra! Z.transfer Funotion 

- --308 (z 

a '--0363 

a t - oUl (z - .521 ± .1.603)(z - .895 ± ,1.596) 
• (Z - 1)(Z + .265 ± j.943)1% - .677 ± J.725} 

J3 T= 028 (z -  .996)(Z -  692 ± j  708) 
(Z - .993 ± j.056)(Z - .058 ± J.979) 

V (Z - .470 ± ,1.876) 
- .809 ± J.573) 



www.manaraa.com

50 

Table 2 (Continued) 

Flight Sampling Z-transfer Function 
Condition Interval 

B T= 0357 • (Z - .995)(Z - 5 3 8  ±1.828) 
^ '32' (Z - .990 ± j.071)(Z + .341 ± j.9l4) 

Z - .128 ± .1.981) 
(Z - .700 ± j.700} 

B T = 043 (Z - .993)(Z - .381 ± j.910) 
(Z - .990 ± j.0852j(Z + .662 ± j.709) 

V (Z + .252 ± .1.952) 
(z - .577 ± j.801) 

B T = .055 (Z - .992)(Z + .852 ± ,1.470) 
(Z - .983 ± j.l09)(Z + .948 ± 0.164) 

(z - .115 ± .1.976) 
(z - .347 ± 0.920) 

T = .022 (Z -.998)(Z- 802 ±1.584) 
(Z - .990 ± o.02b6)(Z - .848 ± j.520) 

^ (z - .534 ± .1.836) 
(Z - .138 ± j.977) 

m = 02q (z - .998)(Z - 673 ±.1.726) 
' ^ (Z - .997 ± j.038)(z - .743 ± 0.658) 

(Z - .188 ± .1.969) 
(z + .304 ± 0.935) 

C T= 034 (z - .997)(Z - 568 ± 1.809) 
(Z - .997 ± o.044)CZ - .654 ± 5.745) 

(z + .109 ± .1.977) 
(Z + .585 ± j.786) 

T = 044 , - '996)(z + .739 ±1.632} 
* (Z - .995 ± j.057}(Z - .449 ± 0.881} 

^ (Z - .337 ± 0.926) 
(z + .936 ± 0.271} 
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The first pair of complex poles listed for each sampling rate for 

Flight Conditions B and G and the real zero in these same cases represent 

the rigid body dynamics. For Flight Condition A, the pole at Z = 1 

represents the rigid body response. The two pairs of complex zeros and 

the two pairs of complex poles represent the first two bending modes, 

notice that the pole positions corresponding to the rigid body dynamics 

are changed very little by variation of the sampling interval. 

A compensation function was found which could be used for all three 

flight conditions. The expression for this compensation function is 

D(z) = " '?)(% - -7 :!= j.65) (12) 

(Z +. .2)(Z + .1) 

Root locus plots were made for each flight condition and sampling rate. 

These are shown in Figures 39 through 51. 

When interpreting the root locus plots, it is well to keep in mind 

that the dynamics of the airframe are never loiown too accurately. The 

body bending poles are known to be within certain frequency limits and 

they are known to be very lightly damped. Just how lightly damped is not 

really known and, therefore, what is thought to be only a decrease in 

damping may actually result in instability. For this reason, the body 

bending poles on the root locus must move inward, away from the periphery 

of the unit circle, as the system gain is increased from zero. 

From Figures 39 through k-S, it can be seen that both the first and 

second bending mode poles move outside the unit circle for sampling 

intervals of T = .0308 and T = .0363 seconds. For T = .04l seconds, 

the initial motion of both poles is nearly along the unit circle, and for 
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Figure 39. Root locus plot Condition A T = .0308 seconds 

Figure UO. Root locus plot Condition A T « .O363 seconds ' 
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Figure i;l. Root locus plot Condition A T = .OUl seconds 

Figure k 2 .  Root locus plot Condition A T = .0^73 seconds 
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Figure IfS» Root locus plot Condition AT» .0605 seconds 
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Figure kh. Root locus plot Condition B T = ,028 seconds 

Figure U5. Root locus plot Condition B T = .0357 seconds 
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— - .8 
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Figure k6.  Root locus plot Condition B T = .043 seconds 
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- - . 6  

•1.0 -.6 ~ .4 -,3 -•2 0 .2 .4 .6 ,8 

Figure h7. Root locus plot Condition B T = .055 seconds. 

1.0 
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1.0 

-1.0 

Figure 48. Root locus plot Condition C T = .022 seconds 

1.0 

8 6 h .4 6 .8 1.0 0 2 2 1.0 

Figure h$. Root locus plot Condition C T = .029 seconds 
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Figure 50. Root locus plot Condition C T = .03^ seconds 
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Figure 51. Root locus plot Condition C T •= .Okk seconds 



www.manaraa.com

59 

T = .0^73J both poles move inward away from the unit circle. The 

root locus for T = .0473 represents an acceptable system. If T is 

increased still further, then the first bending mode pole again moves 

outward as shown for T = .060$ seconds. 

From Figures kk through 4?, it can be seen that the system is 

unsatisfactory except when T = .0^3 for Flight Condition B. For Flight 

Condition C, Figures 48 through $1 show that a sampling interval T = .034 

is needed for an acceptable response. 

In each case, the acceptable sampling rate is the one which places 

the pole somewhat further around the unit circle, in a counterclockwise 

sense, than the compensation zero. In effect, instead of tracking the 

pole position with the compensation zero as was done by Smythe et al., 

the changes in sampling rate forces the pole to stay in the proper 

position with respect to the zero. 

This is the unique feature of this adaptive system. The roots of 

D(Z) do not change position in the Z-plane when the sampling rate is 

changed, but the poles characteristic of the airframe dynamics do 

change and in the case of the body bending poles can be placed in a 

favorable position. 

Figure 52 is a block diagram of the complete system. The pole 

positions describing the airframe dynamics are determined by the process 

identification technique described in Sections I and II and the sampling 

rate continuously adjusted to hold these poles in the desired position 

relative to the zero. 
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Figure 52. Block diagram of digital adaptive controller 
with variable sampling rate 
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IV. CONCLUSIONS 

The adaptive control technique investigated can be "broken down into 

two distinct parts. First, the process identification technique deter­

mines the location of the Z-plane poles associated with the body bending 

modes. Second, the actual adaptive feature corrects the pole position 

relative to the compensation zero. 

The actual adaptation process appears to give excellent results 

provided the pole positions can be observed. That is, changes in the 

sampling rate will move the pole into the correct position. However, 

the technique used to determine the pole positions appears to give good 

accuracy only when very little noise is present in the system. Since 

there will undoubtedly be fairly high noise levels in any practical 

control system, this part of the technique will no doubt be marginal 

in practice. 

For this reason, it is suggested that future work be directed at • 

improving the process identification technique and the investigation 

of other methods such as digital filtering to determine the frequency 

of the bending mode. 

The dynamics of the system have been simplified in this investi­

gation by ignoring the dynamic characteristics of the gyros and 

hydraulic actuators. These effects should be included in future studies. 

Finally, the complete system, including the identification of the 

body bending poles, should be simulated on a hybrid computation facility. 

This would allow the system to be optimized and would be very useful in 

proving or disproving the ultimate feasibility. 
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VII. APPENDIX A - COMPUTER PROGRAM FOR THE SIMUIATION OF THE 

CLOSED LOOP SYSIEIM WITH COMPENSATION 

The program used to simulate the closed loop system is described in 

this appendix. This program computes X and Y for the system shown in 

Figure 53. 

The input (a) may be a unit step function or a random number 

(selected from a random number generator which generates normally 

distributed random numbers for "which the mean is zero and the variance is 

l.OO). D(Z) is a compensation network whose characteristic equation must 

be of order 20 or less. It has the general form 

c + ___ + c Z° . 
D(Z) = -2 SL_ 

d + d^z"^" + + d Z° 
o 1 m 

c + c^Z"^ + --- + c Z'™ 
=  —  ^ ^  (13) 
d + d,Z"-^ + + d Z'™ 
o 1 m 

The denominator is or order m ^ 20 but is normalized so that d^ = 1.0. 

G(Z) is the system transfer function whose characteristic equation also 

must be of order 20 or less. Its general form is 

a + a.Z ̂  + —- + a Z ̂  

b + b^Z -^ + — + b Z 
o 1 n 

where n ̂  20, and b^ = 1.0. Any of the a, b, c, or d coefficients in 

G(Z) and D(z) may be zero except b^ and d^. The orders m and n of D(z) 

and G(Z) may or may not be the same. The noise added to the output of 

G(Z) is a random number multiplied by a variable input parameter "k". 
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Figure 53. Block diagram of closed loop system 
used in digital simulation 
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D(z) and G(Z) are each treated separately in the simulation. Taking 

G(z) as an example 

G( z )  =  "  I f a L  =  f  (15 )  
h + b^z" + — + b z 
o 1 n 

or 

b^Y' = (a X + a^XZ"^ + — + a^XZ"") - (b^Y'Z"^ + — 

+ b^Y'Z'^) (l6) 

n r 
where XZ" is X delayed one sample period and can be denoted X[(m-l)T], 

and Y'ZT^ is Y' delayed n sample periods and is denoted Y'[(m-n)T], etc. 

Since b = d = 1.0 
o o 

Y'[(m)T] = (a^X[ (m)T] + a^X[(m-l)T] + — + a^X[ (m-n)T]) 

- (b^Y'[(m-l)T] + — + b^Y'[(m-n)T]) (l?) 

This equation may be used to compute the present Y' = Y'[(m-n)T], given 

past Y' and past and present X. 

We may note from Figure 53 that 

0(mT) = a(mT) - Y[(m)T] , (l8) 

In other words, we must know Y[(m)T] in order to find 0(mT). More 

involved programming was circumvented by making the constraint that 

a^ equal zero. This constraint means that Y'[(m)T] depends only upon 

past data and no longer depends upon X[(m)T]. (This constraint merely 

means that, the numerator of G(Z) must be of at least one order less than 

the denominator.) The sequence of computation is as follows. 

(l) Compute Y'[(m)T] from past X and Y' data. 
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' (2) Add noise to Y'[(m)T] to get Y[(ni)T]. 

(3) Subtract ï[(m)T] from to get 0(o)* 

(4) Compute X[(m)T] from past X and 0 date and 0(mT). 

This completes one cycle of computation. The desired values are 

read out and all present and past values are shifted in storage to 

simulate delaying them one more time period (20 values are kept to 

accommodate up to a 20th order characteristic equation). The cycle is 

repeated for the desired number of iterations. 

The input required is listed below. 

m - order of characteristic equation of D(Z). 

n - order of characteristic equation of G(Z). 

n - number of iterations desired. 
o 

k - multiplier for noise to be added to the output. 

2m + 1 coefficients - c and d coefficients for D(Z) 

(d assumed =1.0). 
^ o 

2n + 1 coefficients - a and b coefficients for G(Z) • 

(b assumed = l.O). 
o ' 

The number of sets of output values is equal to the input value n^. 

Each set may consist of one of the two following descriptions. 

X, Y - to be used later, to identify G(Z) with output noise added, 

a, X, Y', Y - used to. check out program and data. 
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VIII. APOTDIX B - COMPUTER PROŒAM FOR LEA.ST SQUMFFIS 

COEFFICIEMT IDENTIFICA.TION 

This program forms a matrix of combinations of the X and Y data 

which were the output from the computer program described in Appendix A. 

This matrix is used to solve for the a and b coefficients of 

a Z + — + a 2 " 
S(z) —:ï —15 (19) 

1.0 + b^z + — + b^z 

The input X is in sampled form. G(Z) is the system transfer 

function as described in Appendix A. The output Y is in sampled form 

with noise added. 

The method used to solve for the a and b coefficients is the 

method of least squares. Given an equation 

0 = aX - Y + b (20) 

the constants a and b are to be determined such that 

n p 
f(a,b) = S (aX. - Y. + b) (2l) 

i=l 1 ^ 

is a minimum. To do this it is necessary to first square each equation 

used. These are then added to form a new equation. Ifeirtial derivatives 

of the resulting equation are taken with respect to each coefficient and 

set equal to zero. The set of linear equations resulting from taking 

partial derivatives is solved for the a and b coefficients. 

In our specialized case, by rearranging the equations used in 

Appendix A, we get 
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0 =. (a^X[(m)T] + a^X[ (m-l)T] + — + a^X[(m-n)T] 

- (b^Y[(m)T] + b^Y[(m-l)T] + — + b^Y[(m-n)T]) (22) 

But we have a^ equal to zero and equal to one. Also, to simplify 

the notation, let n = 2. Thus 

0 = a^X[(m-l)r] + agXE (m-2)T] - b^Y[(m-l)T] - bgY[(m-2)T] 

- Y[(m)T] (23) 

In easier notation 

0 = a^v + agW - b^x - b^y - z (24) 

These equations are formed consecutively from the X and Y data. The 

number of equations to be added in forming each matrix is a variable input 

parameter. Squaring this equation gives 

0 = (v^)a^^ + (w^)a2^ + (x^)b^^ + + (z^) + 

+ 2(vw)a^a2 + 2(-vx)a^b^ + 2(-vy)a^^b2 + 2(-wx)a2bj^ 

+ 2(-'wy)a2b2 + 2(xy)b^b2 + 2(-vz)a^ + 2(-vrz)a^ 

+ 2(xz)b^ + 2(yz)b2 (25) 

Taking partial derivatives and setting the results equal to zero yields 
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a 2 
= 0 = 2v + 2vwag - 2vxb^ - 2vybg - 2vz 

1 

a 2 
?— = 0 = 2vwa. + 2w a„ - 2wxb,.- 2wyb^ - 2wz 
^2 ^ ^ ^ (26) 

= 0 = -2vxa^ - 2wxag + 2x^j^ + 2xybg + 2yz 

= 0 = -2vya^ - 2wyag + 2xyb^ + 2y^g + 2yz 

In matrix form, Equations (26) are written as 

v® v® vw -wx -vy WZ 

vw -wx -wy 
^2 

wz 

X 

-vx -xw xy 
^1 

-xz 

-vy -yw yx 

1 
O

J 

^
 

1 

-yz 

This matrix equation is the output of this program. A standard "linear 

equation solution" program is used to solve for the coefficients a^^, a^, 

b^, and b^. 

The input required is given below. 

amt - amount of X and Y data to be read in. 

n^ - number of matrices to be computed. 

n - number of equations to be added together informing each matrix, 

data - X and Y data computed in the "Closed loop system with 

compensation" program. 

The output will be the matrix of combinations of coefficients. 
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IK. APPEIJDIX C - PROGRAM TO CONVERT LAPIACE 

TRANSFORMS TO Z-TRMSFORMS 

In principle, the procedure for finding the poles and zeros of the 

Z-transform corresponding to a Laplace transform of the form 

m 0. 
TT (s + a^) 

F ( s )  =  ^ ( 2 8 )  

TT (s +B.) ̂ 
i=l ^ 

is fairly straightforward. The Laplace transform is first expanded into 

its partial fraction form, as 

n ^i"^ K 
F(s) = 2 E • (29) 

(s + b. ) ̂ ' 

and then each term is replaced by its Z-transform 

T, K. . ,k „ 
(30) 

'^1 Z - e ^ 

Where k = r^ - j - 1, and T is the sampling time. It can be shown that 

for k s 1 

where p^(Z) is a polynomial of the form 
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pj^(z) = z''-^ + pk.l ^ + \,2 * - ' -

^,1 " - - - + fk,k.2 

-(k-l)b.T 

+ &,k.l ' (32) 

in which the coefficients, j|^ , are given recursively by 

^1,0 ̂  = (i+ ^^k-l,& -1 (33) 

where 1 ̂ i ̂ k •- 1, ^ = 1, and = 0. Thus, the 

Z-transform, G(Z), of F(S) will be 

(34) 

„ r -1 • -b.T 

G(Z) = S E ^i,/^ ̂  9k(^) 

1=1 j=0 _b.T k+1 

kl(2 - e ^ ) 

where k = r. - j - 1 and p, (Z) are as defined above. These fractions 

can be added to give a single fraction representing the Z-transform. The 

numerator of this fraction must be found in polynomial form, and a root-

finder must be used to find the zeros, but the demoninator can be found 

-b T 
in factored form and the poles will be e i for 1 ̂ i ̂  n. 

A less general version of this technique was tried. The recursive 

relations for finding the partial fraction coefficients and the poly­

nomial coefficients, P , were not known at the time this technique was 
k, 

tried. The computed locations of the zeros were very inaccurate. Most 

of the inaccuracy appeared to be due to the round-off error in the 

formation of the coefficients of the numerator polynomial, but the 
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inability of the rootfinder being used at that time to accurately find the 

roots of a polynomial having some of its roots nearly equal probably 

contributed to the error also. Consequently, several non-standard 

techniques were employed in the final program to enable the zeros to be 

found accurate to 5 places using 8-placg floating point arithmetic, which 

was all that was conveniently available. 

One of the techniques used to improve accuracy was to avoid the 

computation of the coefficients of the numerator pol^momial. Tiiis was 

done by computing the partial fraction expansion of the Z-transform 

fraction. The numerator, evaluated at a given value of Z, can then 

be computed by multiplying the partial fraction expansion times the 

denominator, both evaluated at Z. 

The Z-transform partial fraction expainsion coefficients are 

computed as follows: 

The Laplace transform is assumed to be in the form of 

Equation (l), except the r^ are restricted to the range 

1 ̂ ^ 3J and the partial fraction expansion of the 

Laplace transform is given by Equation (29). The first partial 

fraction coefficient corresponding to a given pole (and the 

only coefficient for a first degree pole) is given by 

(35) 
n r. 

k 
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The second coefficient for a second degree pole and the second 

and third coefficients for a third degree pole are given by 

k^i 

m - \ - r 
k, o = k, n [ z ô - 2 
•i,2 1,0 (_b + a )2 k=l (-b. + b 

1 it k^i 1 * 

k^i 

The Z-transform, G(Z), is obtained by replacing each term in 

Equation (2$) by its Z-transform. Thus, the following sums 

of terms 

-b.T ' -b.T -b.T ' 
Z  _  e  ^  ( Z - e ^ )  Z - e ^  

and 

- p -b.T -b.T -b.T 
1 K ZT^e (Z + e ^ ) K ZTe K Z 

-b T -b.T p , -b T 
(Z - e )3 (Z _ e ) Z - e 

correspond to a first, second, or third degree pole 

respectively. 
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Since Z is common to the numerator of all terms of G(Z) 

n ^i"^ H. 
G(Z) = Z[ Z S ^ ] (38) 

i=l j=0 -b.T r.-j 
(z - e 

The coefficients, H. are as follows 

for a first degree pole: q ~ ̂ i 0 (39) 

-bit 
for a second degree pole: ^ ^Te , 

«1,1 = \,1 ("O) 

2 -2til 
for a third degree pole: H. _ = K. e , 

X,U I5U 

-b.i 

«1,2 = 2 c") 

Obviously, Z = 0 is a zero of every G(Z). The rest of the zeros 

will be roots of the expression 

n ^i"^ H. . n -b.T r, 
( Z S  ̂ ) X TT (Z - e ^ ^ (42) 
i=l j=0 -b.T r. . i=l 

(Z - e ) 

The degree of this expression is one less than the degree of the 

Z-transform (and Laplace transform) denominator. When the degree of the 

Laplace transform numerator is less than one the degree of the Laplace 

transform denominator less one, then the coefficient of the highest order 

term of Equation (42) is zero. However, when round-off errors in the 

computation of the H. . are considered, this coefficient may not be 
1, J 
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exactly zero. In this case it is advantageous to reduce the degree of 
<.tz-

Equation (42) by one. This is done by multiplying the partial fraction 

expansion in Equation (38) by (Z - e ) and by subsequently dropping 

the first pole if it is simple, or by reducing r^ by one if it is not. 

The new values of H. . are computed as follows 

-b.T -KT 
H = H x(e 1 - e ^ ) + H (^3) 
1 > J 1 ̂ J 

for j = 1, • • 2 taken in decreasing order, 

-b.T -bgT 
Bi,0 = f ) (W 

When a root has been found at Z => X, it is divided out of the partial 

fraction expansion by modifying H. . as follows 
^5 J 

h. n 
«1,0 = (^5) 

e ^ X 

and 

H. , -H. . , 

e ^ - X 

for j = 1, r^ - 1, and taken in increasing order. Then another pole 

is multiplied out in the same manner as shown above, and the process is 

continued until all the roots h. ve been found. 

The rootfinder used is a modified version of one that was 

originally written for the Illiac and was subsequently adapted for the 

Cyclone. The rootfinder was modified to keep a copy of the original 

polynomial as well as the reduced polynomial from which the previously 

found roots had been divided. When a value of Z is found which satisfies 
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the reduced polynomial, that value is inserted into the original poly­

nomial to determine whether it is also satisfied. In cases in which 

the original polynomial is not satisfied, other values of Z near to this 

value are tried in a systematic way until one is found which does 

satisfy the original polynomial. This technique prevents the accumu­

lation of errors which results when an inaccurately known root is divided 

out of the polynomial thereby changing the value of all subsequently 

found roots. Also, a technique was devised for finding a root to a 

given number of places of accuracy relatively independent of the 

distance of the root from all other roots. If f(Z) is a polynomial in 

Z having roots at r^^, r^, * • ' r^, then at any given value of Z, 

|f(Z) is equal to n^|z - r^|^. Suppose that the sequence of trial 

roots, Z, generated by the rootfinder is approaching the root r^, and 

suppose that the criterion for ending iteration is that the distance 

from Z to r^ should be less than some small number ô. Then the 

iteration should cease when |f(Z)|^ is less than or equal to 

0^ • rr jz - r.l^. The variables BDH and SMMl in the rootfinder (see 

^ ^ i 12 the program; are estimates of /n^lZ - r^| for the reduced and original 

polynomials respectively, and these estimates improve as Z approaches a 

root. Thus the criterion for ending iteration is |f(Z)]^ less than or 

equal to 6^ * (BDH) or |f(Z)j^ less than or equal to 6^ • (SMAH). 

The program is shown in Figure 54. 
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array 

array 
array 

AAR[6O], MI[6O], BBR[6O], BBI[6O], CCR[6O], 
cci[6o] 
DDR[60], DDI[60], IA[20], IC[20], ID[20] 
ZER[20], ZPI[20], BR[60], Rl[60] 

27 read 
if (T) 1,1,2 

1 St 013 

tiiys 
T 

1=1,60 

IE 
1=1,IR 
RR[I], RI[I] 
E1,E2 

2 continue 
e clock 

read 
if (T-1) 700,704,702 

700 do 701 
701 BR[I]:^I[I]=0 

go to 7oh 
Y02 read 

do 703 
703 read 
704 read 

Sl=3l-)ffi1; E3=E2^2j E4=5*32 
e code8 3 
e crlf 3 

B=1 ' 

read ST, R, IIA. 
do 3 1=1,m 
read IA[l], MR[l], Ml[l] 

3 %=%+!&[ I] 
read IID 
do 4 1=1 ,IID 
read ]D[l], DDR[l], I3Dl[l] 
M-ID[I]; T=exp(-DDR[I]*ST); rKETA.=-DDI[l]%eST 
TR=ZER[ I] =cos (THETA. )*T; TI=ZPl[l] =s in (THETA. )*T 

e Ixn 1,1 
e out ID, 1,010 
k punch TR, TI, / 

c compute Z transform partial fraction expansion 
20 M=1 

do 28 L=1,I3D 
SR=-DDR[L]j SI=-DDI[L]J FZR=1; FZI=0 

e tsx 1^210,5 
e tsx Zl30,6 

T=^ZR#ZR+FZI#ZI; FZR^^'ZR/T; FZI=-FZI/T 
e tsx %200,^ 
e tsx Zl30,6 

if (lD[L]-2) 26,24,25 

Figure ^h. Z-transform computer program 
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2h bbr[m]=(fzr*zhi[l]-fzi*zpi[l] )^fst 
bbi[KI=(fzr*zpi[l]+fzi*zer[l] )*st; m=m+i 
FKR=FIII=Oj IOT=1 

e tsx 1^10,5 
e tsx Z1T0,6 

fkr=-fkr; fbi=-fni 
e tsx 11200,5 
e tsx Z170,6 

bbr[x] =fm#zr-fbi#zi; bbi[m] =fm#zhfni#zr; • m=m+1 
go to 28 

25 tkr=^hi[l3; tni=zpi[l]; to=<rnr*tm-tni*tki 
ti=2^(-ti®*tki; t=st-!«st; bbr[m]=(fzr^5-tr-fzi*ti)*t 
bbi[m]=(fzr*ti+fzi*tr)*t; m=m+1 
fhr=fki=p/^r=?^'ji=0; int=2 

e tsx 2210,5 
e tsx Z170,6 • 

fm=-fnr; fni=-fni; fk'r=-fi{r; fwi=-fvri; 
e tsx lis 00,5 
e tsx E170,6 

tr=st/2+fie; ti=fni*tm-km*teij tr=tr*tiir-fni*tki 
bbr[m] =(tr*fzr-ti*fzi )*st; bbi[m] =(tr*fzi+ti4®'zr )^?sr; m=m+1 
tr=fnr -fni#i'iitfvjr} ti=2 #ei+f^ti 
bbr[m]=(fzr*tr-fzi*ti)/2; bbi[m] =(fzr*ti+fzi*tr )/2; m=m+1 
go to 28 

26 bbr[m]=fzr; bbi[m]=?zi; m=m+1 
28 continue 

ib3=m-1; lbb=lid=1 

c commte K 
13 if (N) 14^15,1 
11+ continue 
e tsx _ 11250,6 
15 M=ISB-1; SR=0 

do 16 L=LID,IID 
16 m=m+id[l]; sr=sr-®br[m]j ia.[l] =ic[l] =id[l] 

r=r«sr; laa=lcc=ibb| lic=l3a=lid; ir=0; ll^=^ 
pujich /, R, / 
do 17 I=I3B,IBB 
aar[ i] =5br[ i] =ccr[ i] =bbr[ l] /sr; aal[l] =bbi[i] =ccl[i] =sbi[i]/sr 

e trssi *+2 
e tru *+7 
e tab 1 

punch • EBR[I], BBI[I], / . 
17 continue 

t=0 

Figure 5^ (Continued) 
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punch 
go to 50 

A T, T, / 

c load numerator 
200 IIC=IIA; K=0 

do 201 1=1,IIA 
201 IC[l]=IA.[l]j CCRCI]=AAR[I]J CCl[l]=Ml[l] 
e tru — 1 

c load denominator 
210 110=12); K=L 

do 211 1=1,13) 
211 IC[I]=ID[I]; CCR[I]=®DRCI] j CCl[l]=DDl[l] 

c multiply factors 
130 do 135 1=1,lie 

if (I-K) 132,135,132 
132 J=IC[l3j IR=CCR[I]45R; TI=CCI[I]45I 
134 T=ïZR*'m-FZI*TI; FZI=fZR*TI+FZI*TRj FZR=T 

J=J-1 
if (J) 1,135,134 

135 continue 
e tru 1,6 

c subroutine for taking derivative 
170 do 176 1=1,lie 

if (I-K) 174,176,174 
174 TR=CCR[l]4gR; TI=CCI[I]+SI; T=<!E*IR+TI*TI; TR=0E/T; TI=-TI/T 

ACCR=IC[l]^«fm; ACCI=IC[I]*TI; FMR =€'KR-tACCR; FNI=FNI4ACCI 
if (lWT-2) 176,181,1 

181 FVv'R=Fî'IR-(ACCR*TR-ACCl4«Tl)j FWI=FIfI-(ACCR*TI4ACCI*TR ) 
176 continue 
e tru 1,6 

c subroutine for multiplying out pole 
250 SR=SH?[LID]; SI=ZPI[LID]; M=3BBJ L=IID 
253 ÏR=ZÎR[L]-SR; TI=ZPI[L]-SI; J=ID[L]-1 

ACCR=SBR[ M] *TR-BBI[M] *TI; ACCI=SBR[M] *TI-ffiBl[M] *1R 
do 251 • 1=1, J 
T.-/'R=5BR[M-1 ] ; WI=SBI[M-1 ] 
BBR[M]=àCCR-KI5®; BBI[M] =?âCCI+T^rij M=M-1 

251 ACCR=<E^-®^fTR-<F/JI*TI; ACCI=Ti'Sl*TI+T'//I*TR 
BBR[M]=ACCR; BBI[M]=ACCIJ M=M-I 
if (L'LID) 1,254,252 

252 L=L-1 
go to 253 

Figure 54 (Continued) 
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2'yk LBB=LBB+1; ID[LnD] =ID[L3D]-1 
if (]D[L]D]) 1,255,256 

255 lb mlb+1 
256 continue 
e tru 1,6 

c find roots 
50 errœ=5:3 
e tsx 2109,5 

go to 609 

609 ]E=IR+1j RRC3R]=2®; RlClR]=XI 
punch • XR, XI, SR, SI, / 

e trss2 *+2 
e tru *+7 
e mode 3 

punch /, XR, XI, / 
e mode 2 • ^ 

if (LBB-IBB+1 ) 615, 710, 1 

710 continue 
e clock 
e sub TIM 
e crlf 1 
e out ,,030 
e crlf 1 
e tru &7 

5 ERRaR=El 
e tsx 1^25,5 
e tsx Zl 09,5 

go to 6 
go to 630 

6 continue 
e tsx 23520,5 
e tsx 25^0,5 

xm=XR; XMI=XI; FWMî=SR; F'//MI=6I; SML=R; imA 
e tsx E120,6 

if ((HR*HR+HI*HI)/XSQ-E3) 625, 625, 7 
7 hmr=-hr; HMI=-HI 
e tsx 1^40,5 

f#r=sr; fma:=6i 
if (R-SML) 8, 8, 9 

8 SÎ'L=R; IKT=3 
9 continue 
e tsx 525,5 
e tsx %35,7 
e tsx Zl45,6 

FWR=€!R; FWI=SI 

Figure 5^ (Continued) 
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e tsx 
e tsx 

Ein,6 
E120,6 

R=IE*IR+HI*HI 
if (R/XSQ-E3) 620, 620, 10 

10 A]yR=-(Hm*HR+HMI*Hl)/fe; AK[=(mR*HI-HMI*BR )/h 
DR=^Ml+lj DI=AMI 

6o8 continue 
e tsx ^20,5 
e tsx Z^40,5 

FZR=6R5 FZI=si; Fl®=F]NMîj FKI=FNMI; FW=fWMl; FWI=FWMI 
if (R-SML) 11, 11, 12 

11 SIyL=fl; I]OT=1 
12 HR=H^R; XR=XJ®; XI=XMI; ERRCR=E3 

go to 609 
go to 609 

620 AMÎ=sq.rt((BR*HMR+HMI*HMl)AsQ)/H2 
621 AMI =01=0; DR=Am+l; T=DR/Am 

XR=XM^-T*HMî; XI=XMI-T*IMr 
go to 608 

625 m=sqrt(XSQ)*E2 
626 HMI=0; XR=XMR-Hm; XI=XMI 
e tsx ^5^0,5 

FNL®=SRj F1IMI=6I 
if (R-SML) 627, 627, 628 

627 SML^t; INT=2 
628 ANR=-0.5 

go to 621 
630 BR=sqrt(XSQ)jë:2 
e tsx 1^20,5 
e tsx ^5^0,5 

XM^=XRJ XMI=XI; F^m=GR; FWMI=gI; SML=R; IKT=3 
go to 626 

c divide by root and imltlp]y by pole 
615 M=IBB 

do 617 L=Lro,IlD 
TO=sm[L]-XR; TI=ZPI[L]-XI; SR=6I=0; J=3D[L]+M 
T=ŒR*TR+TI*TI; TR=ŒR/T; TI=-TI/T 

616 SR=3BR[M]-^; SI=«BI[M]-SI; T=6RiŒR-SMI 
SI=BBI[M]=SR*TI+SI*TR; SR=5BRCM] =CI?; M=M+1 
if (M-J) 616,617,1 

617 continue 

e tsx 
e tsx 

2533,7 
050,5 

e tsx 
if (IIA) 619,1,614 

1^50,6 

Figure 5^ (Continued) 
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619 im=i 
613 continue 
e trssl *+2 
e tru E5 

do 618 
e tab " 1 
618 punch BBR[M], BBI[M], / 

go to 5 
614 if (nag(XI)-24) 613,613,612 
612 im=-ij xi=-xi 

go to 609 

c rootfinder subroutine 
109 K=IR+1; XR=ï^[K]-l; XI^I[N] 
e tsx Z145,6 

FZR=SR; FZI=6I; XR^[ïï]+l 
e tsx E145,6 

Fî®=SRj FNI=SI; XR=KR[U] 
e tsx &45,6 

Fm=SR; FVri=SIj AI® =-0.5; DR =0.5; m=-l; AME=0I=HI=O 
R =19+08 
go to 149 

48 if (lET-l) 1, 49,110 
49 T=5A.mi(Am4AK[WlMI; TR =-(DRWim4DIj(AMI )/T 

. AMI=(DR«AMI-DI^5AMÎ )/T; Am=([R 
e tsx Z530,7 

SR=FZRJ SI=?'ZI 
e tsx 2535,7 

F^®=SRj FV7I=SI; 11^=3; R=SML 
110 continue 
e tsx Zin,6 

if (R-BDH*ERRCR) 60, 60, II9 
119 continue 
e tsx Zl20,6 

if ((HR*HR+HI-!fHl)AsQ-2o-l6) 61, 61, 148 
148 continue 
e tsx Z535,7 
e tsx El 45,6 

Fm=SR; FWI=SI 
150 E=¥:-ïR*F^m+r^ii^ii 

if (R-SML) 149, 149, 48 
149 SML=5l; INT=3 

go to 110 

60 continue 
e tru 1,5 
61 continue 
e tru 2,5 

Figure 54 (Continued) 
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c subroutine for evaluating Z transform expansion 
145 continue 
e trssi Z140+2 
e stz SR 
e stz SI 
e Ixn icc,3 
e Ixn IID,2 
e sxd E144+1,2 
e sxd 539+1,2 
139 continue 
e Ixn Lie,2 
e txh Z144,2 
e cla xr 
e sub zbr,2 
e sto TR 
e cla XI 
e sub ZPI,2 
e sto TI 
e ml TI 
e sto Et-1 
e cla TR 
e ml TO 
e add Zt"! 
e sto T 
e sub E3 
e trp D38 
e cla ccr,3 
e sto sr 
e c3a cci,3 
e sto SI 
e txd *+1,2,1 
e sxd *+3,2 
e swap *+2, ,Zl44+l 
e tru Z144 
e txh *+1,2 
e swap Z144+1,,*-1 
e txi Zl 44+1,2,1 

138 TR=<CR/Tj ti=-ti/t 
e 
e 
e 
e 
e 
e 
e 

cla 
Ixn 
cla 
sto 
cla 
sto 
txi 

IC,2 

ocr,3 
ACCR 
CCI,3 
ACCI 
547, ,1 

146 continue 

Figure 54 (Continued) 
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e add OCR,3 
e sto ACGR 
e cla ACCI 
e add cci,3 
e sto ACCI 
e txi Zi47,3,1 

147 continue 
e lirai tr 
e sto Zt-1 
e cla ACCR 
e mul TI 
e add Et-1 
e sto T 
e cla ACCI 
e mul TI 
e sto Zt-1 
e cla ACCR 
e iml TO 
e sub Zt-1 
e sto ACCR 
e cosy T,,ACCI 
e tlx Zl 46,4,1 
e add SR 
e sto £R 

SI=SI4ACCI 
Z739+1,2,1 e txl Z739+1,2,1 

144 continue 
e Ixn Lie,2 
e txh Zl40,2 
e cla IC,2 
e Ixn ,4 
e cla XR 
e sut) zbr,2 
e sto TR 
e cla XI 
e sub ZPI,2 
e sto TI 

142 continue 
e cla si 
e mul TI 
e sto Zt-1 
e cla SR 
e mal TO 
e sub Zt-1 
e sto T 

Figure (Continued) 



www.manaraa.com

88 

e cla SR 
e mul TI 
e sto Zt-1 
e cla SI 
e mal TR 
e add Lt-1 
e sto SI 
e copy fSR 
e tlx D42+1,4,1 
e txi El 44+1,2,1 

11^0 continue 
e trssi *+6 
e tru 1,6 
e tati 1 

punch XR,XI 
e tru El 45+1 

punch SR,SI,/ 
e tru 1,6 

c load original polynomial 
520 LCC=IAA.; LIC=LlA.j IC[L]li] =IA.[LID] 

do 521 M=LAA,IBB 
521 CCR[M3=^[M]j CCI[M]=MI[FJ 
e tru 1,5 

c load reduced polynomial 
525 LCC=IBB; LIC=LIDj IC[L]D] =]D[LID] 

do 526 M=IBB,I3B 
526 CCR[M]=£BR[M]; CCI[M] =$BICM] 
e tru 1,5 

.530 DR=1-hA.m; DI=AMI; 
HR=T; XR=XR+m; XI=XI+HI 

533 xsq=xr4a(r+xi*xi 
if (XSQ-E3) 531, 532, 532 

531 XSQ=S3 
532 continue 
e tru 1,7 
535 FZR=FKR; FZI=Fm; FHR=FÎ®; FIII=€VI; IKT=INT-1 
e tru 1,1 

end 

Figure 5^ (Continued) 
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