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I. INTRODUCTION

A, Problem Description

Modern aircraft and miséiles operate over an extremely wide range of
conditions and their dynamics or response characteristics vary widely.
For this reaéon, a control system which givés a stable well behaved
response for low speeds and low altitudes may not be satisfactory at
high speedé and/or high altitudes. In fact, the system could be completelf
unstable.

This type of problem has been solved in the past by control systems
in which the gains of the various feedback loops are changed in response
to signals generated by a computer. In effect, the computer determines
altitude and velocity and then adjusts the control systém gains to some
predetermined value which should give optimum chﬁracteristics. This is
essentially an "open loop" type of operation. That is, if the pre-
determined éains are not correct and the system should become unstable,
there is no feedback mechanism to allow further correction.

An additional complication to the problem appears in large space
vehicles or boosters, and in advanced aircraft such as the XB-70. In
these vehicles, the structure cannot be considered & rigid body. Bending
of the body about the transverse axes can be sensed by rate gyros. This
signal from the gyros is fed into the control system along with the rigid
body motion of the vehicle and can result in an instability at the
natural ffequency of the structure., Furthermore, the frequency and
amplitude of the body_bending varies with flight conditions and flight

time. That is, the amount of mass (fuel) will change during the flight .



and hence the natural frequency and damping of any resonant mode must be
expected to change.

In addition to these problems there-are many cases, particularly in
experimental veh;cles, in which the exact dynamic characteristics are not
known and cannot be predicted with any reliability. The X-15 and the
XB:YOiare two exémples of this; In these cases, attempts.to change the
gains in the flight control system while in operation are not

satisfactofy.

B. Adeptive Control Systems

Many of the problems described above are solved, at least to a large
extent, by the use of adaptive control techniques. Adaptive control
differs from ordinary gain changiﬁg in that adjustments are made on the
basis of the performance of the system itself as it is operating, and not
on the basis of measurements of some external phenomena such as altitude
or velocity.

One of the simplest and most successful techniques used to date was
developed by Minneapolis-Honeywell (l). This technique is fprther
described in a M.S, Thesis by R. C. Hendrick (2). It has been used with
good results on the X-15. In the Honeywell system, a controller is
designed such that there are a toﬁal of three more poles than zeros in
the overall open loop transfer function. The compensation is designed so
that for some very high gain;‘all but two of the poles are well into the
left half blane, and two complex poles are approaching the imaginary axis _
at a frequency well above that of the aircraft response, See Figure 1.

The response of the system is exbtremely rapid so that input signals must



Figure 1. Root locus of high gain adaptive control system



be filtered to prevent excessive g-force buildup, and.prevent damaée to
the structure. To ensure that the gain is held at a sufficiently high
levelvwithout allowing the two complex poles to cross into the right half
plane, a gain changing device must be used. A bandpass filter tuned to
the natural frequency of the complex poles detects the buildup of
oscillations. When the amplitude becomes too large, the gaiﬁ is reduced.
If no oscillation aﬁ all appears, the gain is slowly increased. The
result is a continuous, small oscillation in the system gain, and a
small limit cycle in ﬁhe system output at the frequency of the complex
poles. A block diagram of the Honeywell High Gain Adaptive Control
system (2) is shown in Figure 2.

Another system, which uses a variation of the Honeywell technique,
has been developed by General Electric (3). In this system the two
‘complex poles are not allowed to reach the imaginary axis. The sensing
for gain setting is accomplished by notiﬁg the presence of signals in
the output at the natural frequency of the complex poles. As the gain is
varied, the frequency as well as the damping of this pair of poles will
change. The gain is adjﬁsted to keep these poles at the same frequency
and therefore nearly the same position in the s-plane. The closed loop
system then has effectively the same characteristics as the Honeywell
system'except there is no lcw ampli‘bude oscillation or limit cycle in the
output of this system.

In practice, this system is somewhat more sensitive to noise and
wind gusts than the Honeywell system and has not been too satisfactory in

operation.
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The two systems described here are not satisfactory for the control
of missiles and aircraft when body bending cannot be ignored. Figure 3
is the pole-zero plot in the s-plane of the transfer function describing
the pitch response of a flexible_missile to control surface deflections.
Only the first two bending modes are indicated since higher order modes
are usually very small in amplitude. Since the body bending poles are
so close to the imaginary axis, any high gain system will have stability
problems unless some method is found to control the motion of these poles.

From the mode shapes shown in Figure 4 it is apparent that the
amount of body bending sensed by{the gyro depends upon the position of
the gyro with respect to the node. If the gyro is at position A, there.
will be relatively large body bending signals present. If the gyro is
at position C, there will also be large siénals, but 180° out of phase
with the signals picked up at A. At B there will be relatively little
signal sensed for the second mode and none for the first mode.
Unfortunately, this node shifts during flight, and even if it were
stationary its position cannot be predicted with any accuracy. For this
reason, attempts to eliminate the first bending mode by placing the gyro
at the correct location are not practicable,

Several methods have been proposed to overcome this problem.
Minneapolis-Honeywell has déveloped a so-called gyro-blender technique
which effectively reduces the bending mode signal (4). In this system
(see Figure 5) two gyroscopes are used. One is placed well ahead of the
node and one well behind. The output of the two gyros are added and
their gains adjusted. - Since the two bending signals are 180° out of

phase they are effectively canceled. As the node position changes,
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a filter and detector will detect the presence of the bending mode
frequency in the blended signal, and adjust the gains to drive this
unwanted signal to zero. This method can be used to eliminate one mode,
but since the node for the second bending mode will not necessarily be
near that of the first mode, it will not eliminate both bending signals.
This is usually not too much of a problem, since the second mode can
generally be kept stable more easily than the first mode.

A similar effect can be obtained using a band rejection filter (5).
In this case, however, the parameters of the filter must be varied so
that the rejection band will track the bending mode frequency.

Another method which has been discussed in the literature involves
the use of a "synthetic" control signal (6). The actual feedback signal
fI‘OI:O. the sensors is used only to determine the characteristics of the
"synthetic" signal. The rigid body dynamics are usually approximated.
as a second order system and the frequency and damping are adjusted to
give a least square fit with the actual feedback signal. This requires
a digital computer with a fairly high speed since these computations must
be done in real time., The resulting damped sinusoid is ’qhen used to
actuate the control devices and maintain control of the vehicle.

All of the techniqgues Qiscussed. except the last one make use of
some sort of identification of the system characteristics. In the
Honeywell and General Electric high gain systems the critical gain is
determined so that the gain can be set accordingly. In the gyro blender,
the system effectively finds the node position, and in the band rejection

filter, the mode frequency must be found.
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The technique which was investigated is similar to these well known
techniques in that it is necessary to determine the position of the poles
characterigtic of the firsﬁ body bending mode. When this identification
is accomplished, then the adaptive characteristic of the system will hold
the pole in the propef position with respect to the compensation zero.
This is accbmplished by Smythe et al. (5) by moving the zero position.
The technique which is the subject of this dissertation does not move the
zero, but rather moves the pole associated with the first bending mode.

This is accomplished by varying the sampling rate.

C. Description of the Sampled-Data Adaptive System |

Advances in the state-of-the-art are continpally making digital
computers more attractive for flight control systems. This is
particularly true for large missiles and boosters since the digital
computer is already present for the guidance system and can be deéigned
to include the flight{contfél functions with very little additional
hardware. |

To understand the operation of the digital adaptive control system
which was investigated, consider the éomplex pair of poles in the
Z-plane in Figure 6 as being the first bending mode poles, If the poles
are at the positions designated 1, 1’, and compensation zeros are added
as shown, then & root locus plot might be made which would indicate that
the poles will never move outside the unit circle. (Note that a locus
such as tﬁis would be obtained if other poles and zeros for other bending
modes, rigid body dynamics etc. were included. These have been pmitted

in Figure 6 for the sake of clarity.)
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Figure 6. Bending mode poles in the Z-pla.ne
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Assume that the bending mode poles move to positions 2, 2' due to
changes in fuel load, dynamic pressure, etc., and the compensation
zeros remain fixed. Then the root locus will have quite a different
shape as shown in Figure 6. Since the locus is outside the unit circle,
the system Will be unstable for any other than very high or very low
values of gain. In the majority of control systems, the gain setting
will be determined by other factors such as error specifications or
rigid body stability as in the Honeywell adaptive system. (The system
investigated might be used in conjunction with such a high gain system\)
Since the gain must be set to meet other requirements, the bending mode
can;t be kept stable by gain adjustment. The method most frequently
suggested is to change the compensation zero location. This is the
method of Sﬁythe et al. (5) and Prince (4), but is not the method
described here. |

The pole positions in the Z-plane are given by the zeros of the
expression

2

72 . 27 e cos w T + e 0T (1)

where w, and @ are defined in the time function eAxt sin wot, and T is
the sampling period of the sampled data system. The zeros of this
polynomial are

7 = eJxT[cos o T £ j sin 0 T] = ¢ 0T FjwoT (2)

If O is small, which is the case for a lightly damped characteristic
such as will describe the body bending modes, and if W, is relatively

large, then changes iﬁ T will result in motion of the body bending mode
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pole on a path which is nearly 8 circle with its center at the origin of
the Z-plane. In this case then, motion of the body bending pole from
positions 1, 1' to 2, 2' in Figure 6 can be'compensated for by reducing
T by the appropriate amount .

This change in T will also change the positions of the rigild body
poles and the other bending mode poles. In the case of the rigid body
poles, W, will be small enough so that the change in position will not
be troublesome. In the case of the poles corresponding to the second and
third bending modes, their characteristics are such.that they can usuvally

be kept stable over a fairly wide range of T.

D. Process Iaentification
In order to properly adjust the value of T, the sampling interval,
there must be some means of determining the positiop of the poles in the
Z-plane. The identification of the pole positions in the Z-plane (or in
the s-plane) is usually referred to as process identification. In the
case of sample-data systems this is not a difficult theoretical problem,
The pulse transfer function of any process under investigaﬁion may

be written in the form

-1 -n
Y(Z) a, +’a' VA + o 0 . * a, Z
- =2 2 = c(z) | (3)

" -1 -n ‘
x(g) b tbyz .. tb z

The process identification problem is then that of evaluating the

coefficients By B ¢ ¢ v B, b, b, bn' The assumption may.be

1 n 0 1

made that 2, is equal to zero since no physical system will respond

instantaneously. Furthermore, bo may be set equal to unitvaithout
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loss of generality. Then

Y(z§ = (a.l 2t o+ 8y 272 4 . . &, z2™%) x(z)

- (b, 27t # by 2k o o - p 2™ ¥(2) | ()

Since z™" denotes a delay of n sample periods, the inverse z-trans-
form gives the output at the m#h sample period as

Y(ut) = &) X ([m-1]7) + + + - + an X ([m-n]T)
- b Y ([m-1]T) - bY ([m-2]T) - - .
- v Y{[m-n]r) | (5)
The expressions for the output at the (m + l)St sample period,
Y ([m + l]T), and succeeding sample periods may also be written in a
similar fashion. When enough simultaneous equations have been obtained
it is possible to solve for all of the unknown coefficients (a,,

8, ¢« * 8 ,b., by ¢ '-bn) of the pulse transfer function. This will

2 n’ "1’ "2
obviously require 2n equations, and is the simplest identificatiog
technique. It is assumed here and in the following work that the orders
of numerator and denominator are'both known.

This approach has fhe very serious disadvantage of being extremely
sensitive to noiée and to inaccuracies in the measurement of the output
and input signals X(kT) and’Y(kT); To eliminate, or at least to
minimize, the effects of nolse in the system, correlation functions are

often employed in process identification (7). These techniques make use

of the fact that the ratio of various correlation functions is,equal to

the pulse transfer function. For example, if %%é% = G(z), then
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9,.(z) ¢ _(2)
X _ =Y =
58 " B0 = 6

(6)

-where ¢xy is the cross spectral fupction and ¢‘xx the specj:ra.l function.
Also,

;ﬁ-ﬁg = 6(z) (7)
where w is some function whj.ch correlates with both the input and output.
The technique investigated here, however, does not rely on the
calculation of correlation functions but, in effect, uses a least square
smoothing approach. The equations describing the output are rewritten as

F=a X ([m-1]T) + a, X ([m~2]T) + « « + + a, X ([m~-n]T)
- Y (uT) - b,Y ([m-1]) - ¥ ([m~2]T) = - « .
- v, ¥ ([m-n]T) | ’ (8)

If the coefficients are known exactly, then F = 0., In general,
noise and errors will be such that F # O. ‘To minimize F » both sides of
the equation are squared. A large number of these equations may be
written and summed to give the single equation

i o i : :
H= £ P°= % [a. X ([mw-1]7) + a, X ([m=2]T) + + - -
=1 m=1 1 2

+ o, X ([a-n]D) - ¥ (1) - by¥ ([m1])
-+ =D Y ([m-n]T)]2 (9)

H must now be minimized by finding the best set of coefficients.
This is done by taking partial derivatives of H with respect to the 2n

unknown coefficients and setting these derivatives equal to zero. This
, , |
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gives 2n simultaneous equations in én unknowns which can be solved‘to
find the set of coefficients which best fit the input and output data.
By summing a fairly large number qf eqﬁations to get the function H, fhe
effects of random noise are greatly reduced.

After cancellation and simplification, the equations are as shown in
Equation (10), page 18. The summation terms in the matrices may be
considered as good approximations to correlation functions if a large
number of term are summed, that is, if i is a large number. This is
apparent if the summation takes place over a large enough number of terms
so as to approximate the usuval integration in the correlation function.
In that case, the equations may be rewritten in terms of cofrelation
functions as showﬁ in Equation (11), page 22, with the computation being
simplified. This then reduces to the technique discussed by Tou (7).

If a relatively small number ;f terms are summed, significant errors may
result when Equation (11) is used. For example, the difference between
mgi X ([m-1]T) a.nd.mél e ([m-2]T), may be sigpificant even though both
of these terms have been replaced by ¢xx(o> in the correlation function
equations. Since much emphasis must be placed‘on the speed with which
the identification can be performed, it is desirable to make i &8s small
as possible. Therefore, in the work done in this investigation the
technique has not used correlation functions but fhe least squares fit

for the input and output data.
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Equation 11 (Continued)



6, L]

8, 0]

¢Xy[+(n-2)T]

¢yy[T]

¢yy[(n-2)T] |

24 - 25

.¢xy[-(n-l)T]

6, L-(a-2)T |

4,,[0]

¢yy[(n-l)T]

,,[0]

Equation 11 (Continued)




26

II. EXPERIMENTAL INVESTIGATTON OF SAMPLED-
DATA PROCESS IDENTIFICATION

An experimental investigation of fhe leaét-squares process
identification technique described earlier was: undertaken as part of
this project. The preliminary work was done on a second order system as
shown in Figure 7 in order to simplify the cbmputation. The initial
investigation was carried out without any feedback, but with hoise
added to the output. The resulis of the identification were then com-
paréd with the results obtained by simply taking 2n sets of data and
solving for the 2n unknown coefficients. The results are shown in
Figures 8a and 8b and Figures 9a and 9b. Ten identifications were made
for each technique for each of two noise levels. The figures show that
the least square technique givés substantially bet‘ﬁer accuracy than the
solution of the set of 2n equations even though the noise level was
from five to ten times as great. The least squares results were
obtained by summing twen}cy equations to form the matrices. (See
Appendix B.)

The hext step in the experimental investigation was to determine how
well the technique would work if there was a closed feedback loop and
noise was allowed to circulate around the loop. The closed loop system
shown in Figure 10 was simulated digitally. (See Appendix A.) The
input to the closed loop was supplied by a random number generator. The
noise, which was added to the output and fed back around the loop, was
also supplied by a random num’bér generator. It was found that this

configuration, i.e. ﬂ'ith the added noise circulating around the loop,
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x(z) SECOND ORDER
—> SAMPLED-DATA SYSTEM

Figure 7. System used in initial process identification work
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Figure 9a. Process identification results using least squares
technique (noise - 5% of input)
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Figure 9b. Process identification results using least squares
technique (noise - 10% of input)
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gavé the greatest errors in the identification.

Data were obtained for twelve different pole'locations in the
Z-plane. Figures 11 through 34 show the results of the identification
runs. In each case two different noise levels were used, and twenty
equations were sﬁmmed in the matrices for each run. Ten runs were made
'for each pole position and noise level.

From theéé figures it appears that fair accuracy can.be obtained
for reasonably modest ﬁoise levels if the system is lightly damped. This
is indicated by the amount of scattering of the solutions in the Z-plane.
The scattering iS considerabié'reduced for pole locations near the unit
circle, This is true except for the systems described in‘Figures 29
through 34 in which the pole is approaching the negative real axis in the
Z~plane. The large amount of scattering in these cases is not too
surprising considering thatAthe poles on the negative real axis
correspond to a system with a natural frequency of one-half the sampling
frequency.

The conclusion drawn from these daxé is that the identification
process will give reasonable results for modest amounts of noise if the
poles are near the unit circle, but not when the frequency is close to
the half sampling frequency. Since tﬁe 5ody bending response of a
missile is very lightly damped, and since the sampling frequency can be
selected at will, the technique appears to have some merit for the
adaptive control of flexible airframes.

The increased accuracy for poles near the unit circle can be

explained in terms of the signal=-to-noise ratio in the output. For a
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Figure 1l. Process identification results
(noise level - 5% of inmput)

-.8 -.6

Flgure 12. Process identification results
(noise level - 10% of input)
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Figure 13. Process identification results
(noise level - 5% of input)
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Figure 14, Process identification results
(noise level - 10% of 4input)



34

-l-o o l-o

Figure 15. Process ldentification results
poles at .25 + J .20 (noise
level - 5% of input Note: poles
off scale at 3.3, 3.85 and 20.94)

| SIS B Y4

~1.0 0 1.0

Figure 16. Process identification results '
poles at 0.25 + J .20 (noise
level - 10% of input)
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Figure 17. Process identification results
. poles at 0.3 + 0.925 (noise
level ~ 5% of input)
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Figure 18, Process identification results
poles at 0.3 + j 0.925 (noise
level - 10% of input)
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Figure 19. DProcess identification results
poles at 0.25 + J .7 (noise
level - 5% of input
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Figure 20. Process identification results
poles at 0.25 + J 0.7 (noise
level - 10% of input)
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Figure 21.. Process identification results
poles at 0.1 + J 0.3 (noise
level - 5% of input

1.0

|

-1.0 -.8 -.6v-.h -2 0 .'2' 4 .6 .8 1.0

Figure 22, Process ildentification results
poles at 0.1 + j 0.3 (noise
level - 10% of input)
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Figure 23. Process identification results
poles at - .3 + J 0.975 (noise
level ~ 5% of input)
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Figure 24, Process identification results
poles at - 0.3 + J 0.975
(noise level -~ 10% of input)
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Figure 25. Process identification results
poles at - 0.25 + J 0.7 (noise
level ~ 5% of input)
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Figure 26, Process identification results
poles at ~ 0.25 + J 0.7 (noise
level - 10% of input)
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Flgure 27. Process ldentification results
poles at - 0.15 + J 0.25
(noise level - 5% of input)
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Figure 28, Process identification results
poles at - 0.15 + J 0.25 (noise
level - 10% of input)



by

1.0 -8 -6 <-b -2 0 .2 A4 6 .8 10

Figure 29. Process identification results
poles at - 0.8 + J .55 (noise
level - 5% of input)
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Figure 30. Process identification results
poles at - 0.8 + J .55 (noise
level - 10% of input)
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Figure 31, Process identificatlion results
poles at - 0.5 + J 0,3 (noise
level - 5% of input)
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Figure 32, Process ldentification results
poles &t - 0.5 + J 0.3 (noise-
level - 10% of input)



43

1 [ V.] []
T 7% 1

-1.0 -.8 -6 -4 <2 6 .2 L6 .8 1.0

Figure 33. Process identification results

poles at - 0.25 + J 0,15 (noise
level - 5% of input)
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Figure 34. Process identification results

poles at - 0.25 + J 0.15 (noise
level - 10% of input)
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lightly damped system the output signal at the natural frequency will
be greater than that for a heavily damped system.’ Since the noise that
is introduced is evenly distribute@ over the frequency range, the signal=-
to-noise ratio at the natural frequency will be greater for the lightly
damped systen. |

To give a more realistic assessment of the value of this
idéntification method, the Z-fransforms of the transfer functions of a
typical missile were obtained (8). These transfer functions are not
~applicable to a specific missile but might be considered as typical of
a medium range research missile. These transfer functions were used in
an investigation carried out by Minneapolis-Honeywell Aeronautical
Systems Division, and include the effect of the Honeywell "gyro-blender".
To eliminate the effects of the gyro-blender it was necéssary to change
the positions of the zeros associated with the bending modes. The
positions chosen fér'the zeros would be more typical for a fixed
gyroscope location. In order to emphasize the problem of changing
bending frequencies, the poles associated with the bending modes were
also altered. This last change is such as to make the control problem
more difficult, but the adaptive system described here still gives
good results. Finally, the third bending mode was dropped in order to
simplify the computation and conserve digital computer time in the
investigation.

This transfér function, along with the compensation actually used
in the investigation of the adaptive technique (see Section III), was

-simulated as described in Appendix A. The results of the-identification
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runs are shown in Figures 35 throuéh 38. The accuracy obtained for these
cases is considerably reduced for the first bending mode but the pole
location for the second bending mode was located very accurately in all
cases. This again can be explained 'in terms of the signal-to-noise ratio
in the output. .The first bending mode is accompanied'by a zéro in the
airframe transfer function which is a result of the location of the
gyroscope near the bending node. As a result, the :esidue of this pole
is smaller than that of the second bending mode and the output signal at
that natural frequency is reduced. This results in a smaller signal-to-
noise ratio in the output at the first bending mode frequency.

Figures 35 through 38 also shéw the increased accuracy that can be
obtained by suming a larger number of terms in the matrices.

From these data it appears that reasonable accuracy can be obtained
if a large number of equations is summed and if the gyroscope location

is selected with more care.
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Flgure 35. Process identification results 60 equations
summed for each matrix (noise level - 2,0%

of input)
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Figure 36. Process identification results 100 equations
summed for each matrix (noise level - 2,0%
of input)
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Figure 37. DProcess identification results 60 equations
summed for each matrix (noise level 5% of
input) '
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Figure 38. Process identification results 100 equations
summed for each matrix (noise level - 5% of
input)
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IIT.” VERIFICATION OF ADAPTATION BY VARIATION OF

SAMPLING RATE

To verify the adaptive characteristics of this control system,
transfer functions for three flight conditions of & typical flexible
missile were used (8). The transfer functions in the s-plane are

tabulated below.

Table 1, S-plane transfer functions

Flight Condition Transfer Function

(s - 1% 313)(s+h £ 20)

A~ (Launch) Cs(s* 2E320)(s + .5 =] L)

B (Maximum (s +.15)(s + .5 = j 30)(s + .02 % j 35)
dynamic (s +.2%72.0)(s+.3%j22)(s+.7%]54)
pressure) _

(s + ,02)(s + .3 3 20)(s + .8 £ 3 40)

¢ (Bumnout - G 3105 T 25 =3 55)(s + -8 £ 5 60)
altitude and
velocity)

As stated in Part II, these transfer functions have been modified
slightly to represent a more optimum gyroscope placement and to
emphasize the change in bending mode frquency with flight conditions. In
order to determine the effect of variation in sampling rate, the
Z~transforms of these functions, preceded by a Zero order hold function,

were obtained for several sampling intervals.



‘The choice of sampling rates was diétated by two factors. First,

. it was desired to place the poles aésociated with the first bending mode -
in the most advantageous region of the Z-plane from the standpoint of
identification accuracy. Second, it was necessary to have the poles move
past the compensation Zero as the sampling rate changed. In actual
practice, pole locations in the Z-plane were chosen and from the

natural frequency in the s-plane the appropriate sampling interval was

.calculated. These Z-transforms are tabulated below. -

H

Table 2. Z-plane transfer functions

Flight Sampling

Condition Interval Z-transfer Function

0308 (Z - 699 * 3.507)(Z - .952 % j.h29)
. (z - 1)(Z - .181 £ 7.968)(Z2 - .B11 = j.574)

>
=
i

(Z - 608 % 5.565)(% - .925 * 3.516)
T -1z F 062 £ .9B)(Z - .7h2 % 3.659)

(Z - .521 * 3.603)(Z - .895 + j.596)
(Z2 - 1)(2 + .265 £ J.943)(Z - 677 % j.725)

(z - .388 + j.634)(z - .84k * j.712)
(@ - 1I)XZ *.517 % 5.829)(Z - .579 # j.803)

(Z - 0166 * 35.579)(Z - .657 % 3.992)
(2~ 1% * 836 £ §.395)7 - .39 % 5.92%)

A T = .0363

A T = ,041

A T = ,0473

A T = ,0605

(Z ~ .996)(Z - .692 % j.708)
(Z - .993 % J.056)(Z - .058 % 3.979)

x (z - 470 % ;.876)
2 (Z - .809 % j.573)

B T = ,028
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Flight = Sampling
Condition Interval

Z-transfer Function

B T = .0357

B T=,043
B T = .055
c T = .022
c T = .029
C T = .034
C T = ,okb

(2 - .995)(Z - .538 £ j.828)
(z -~ .990 + j.0o71)(2 + .341 + j.o1k)

(Z - .128 = 4.

981)

X1z - .700 £ 3.

(Z - .993)(Z ~ .381  3.910)

(Z - .990 £ j.0852)(Z + .662 % 3.700)

(z + .252 % 3,

700)

952)

*1Z - 577 % 5.
(2 - .992)(Z + .852 £ j.470)

(Z - .983 + j.109)(Z + .o48 £ j.164)

(z - .115 # j.

801)

976)

*@ - 347 £ 3.

(2 - .998)(Z - .802 + j,584)
(2 - ,998 = j.0286)(Z - .B48 £ j.520)

(Z - .534 + 3.

920)

836)

*1z - 138 £ 3.

(Z - .998)(Z - .673 £ §.726)
(2 - .997 * j.038)(Z - .7h3 * j.658)

(z - .188 £ j,

977)

969)

X1z + .30F £ 3.

(Zz - .997)(Z - .568 % j.809)
(Z = .997 £ j.OLL)(Z - .654 £ 3.745)

(Zz + .109 % j.

935)

977)

*1z ¥ .585 £ 3.

(Z - .996)(Z + .739 £ j.632)
(@ - .99 £ j.057)(Zz - .Bhg £ 3.BBL)

(z - .337 3.

786)

926)

*1Z+ .936 % 3.

271)
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The first pair of complex poles listed for each sampling rate for
Flight Conditions B and C and the real zero in these same cases represent

the rigid body dynamics. For Flight Condition A, the pole at Z = 1

—

represents the rigid body response. The two pairs of complex zeros and
the two pairs of complex poles represent the first two bending modes.
Notice that the pole positions corresponding to the rigid body dynamics
are changed very little by variation of the sampling interval.

A compensation function was found which could be used for all three

flight conditions. The expression for this compensation function is

(; - 9)Z - .7 % Jé651 ‘ | (12)
(z +.2)( + .1)

D(z) =
RootAlocus plots were made for each fiiéht-condition and sampling rate.
These are shown in Figures 39 through 51.

When interpreting the root locus plots, it is well t§ keep in mind
that the dynamics of the airframe are never known too accurately. The
body bending poles are known to be within cértain frequency limits and
they are known to be very lightly damped. Just how lightly damped is not
really known and, therefore, what is thought to be only a decrease in
 damping may actually result inhinstability. For this reason, the body
bending poles on the root locughmust move inward, away from the periphery
of the unit circle, as the system gain is increased from zero.

From Figures 39 through 43, it can be seen that both the f;rst and
second bending mode‘poles move outside the unit circle for sampling

intervals of T = .0308 and T = .0363 seconds. For T = ,O41 seconds,

the initial motion of both poles is nearly along the unit circle, and for
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Figure 40. Root locus plot Condition A T = .0363 seconds



53

Figure 41. Root locus plot Condition A T = .04l seconds

A

Figure 42. Root locus plot Condiltion A T = .0473 seconds



Figure 43. Root locus plot Condition A T = .0605 seconds
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Figure 45. Root locus plot Condition B T = ,0357 seconds
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Figure 46. Root locus plot Condition B T = ,043 seconds
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Figure 47. Root locus plot Condition B T = .055 seconds.
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Figure 48. Root locus plot Condition C T = ,022 seconds
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‘Figure 49, Root locus plot Condition C T = ,029 seconds



58

< | ! | ){//
L .2 0

] |

! ] T

.2 R .6 8 1.0
Figure 50, Root locus plot Condition C T = ,034 seconds
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Figure 51. Root locus plot Condition ¢ T = ,04l seconds
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T = ,0473, both poles move inward away from the unit circle., The
root locus for T = ,0473 represents an acceptable system. If T is
increased still further, then the first bending mode pole again moves
outward as shown for T = ,0605 seconds.

From Figures 44 through 47, it can be seen that the system is
unsatisfactory except when T = ,043 for Flight Condition B. For Fligﬂt
Condition C, Figures 48 through 51 show that a sampling interval T = ,03%4
is needed for an acceptable response.

In each case, the acceptable sampling rate is the one which places
" the pole somewhat further arownd the unit circle, in & counterclockwise
sense, than the compensation zero. In effect, instead of tracking the
pole position with the compensation zero as was done by Smythe et al.,
the changes in saméling rate forces the pole to stay in the proper
position with respect to the zero.

This is the unique feature of this adaptive system. The roots of
D(Z) do not .change position in the Z-plane when the sampling rate is
changed, but +the poles characteristic of the airframe dynamics do
change and in the case of the body bending poles can be placed in a
favorable position.

Figure 52 is a block diagram of the complete system, The pole
positions describing the airframe dynamics are determined by the process
identification technique described in Sections I and II and the sampling
rate continuously adjusted to hold these poles in the desired position

relative to the zero.
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IV. CONCLUSIONS

The adaptive control technique investigated can be broken down into
two distinet parts. First, the process identification technique deter-
mines the location of the Z-plane poles associated with the body bending
modes. Second, the actual adaptive feature corrects the pole position
relative to the compensation zero.

The actual adaptation process appears to give excellent results
provided the pole positions can be observed. That is, changes in the
sampling rate will move the pole into the correct position. However,
the technique used to determine the pole positions appears to give good
accuracy only when very little noise is present in the system. Since
there will undoubtedly be fairly high noise levels in an& practical
control system, this part of the technique will no doubt be marginal
in practice.

For this reason, it is suggested that future work be difected at .
improving the process identification technigque and the investigation
of other methods such as digital filtering to determine the frequency
of the bending mode,

The dynamics of the system have been simplified in this investi-
gation by ignoring the dynamic characteristics of the gyros and
hydraulic actuators. These effects should be included'in future studies.

Finally, the complete system, including the identification of the
body bending poles, should be simulated on a hybrid computation facility.
This would allow the system to be optimized and would be very useful in

proving or disproving the ultimate feasibility.
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VII., APPENDIX A - COMPUTER FROGRAM FOR THE SIMUIATION OF THE

CLOSED LOOP SYSTEM WITH COMPENSATION

The program used to simulate the closed loop system is described in
this appendix. Thislprogram computes X and ¥ for the system shown in
Figure 53.

The input (&) may be a unit step function or a random number
(selected from a random number generator which'generates normally
distributed random numbers foi'which the mean is zero and the variance 1s
1.00). D(Z) is a compensation.network'whose characteristic equation must
"be of order 20 or less., It has the general form

m-1
lZ

azB 4 a7zt e ol +a2°
o 1 m

m (o}
cZ +oec + et Z
o} m

D(2)

¢, * clz':L R

- _ _ (13)
4 +a4.2 4 e + a3z ‘
o) 1 m

The denominator is or order m < 20 but is normelized so that d.o = 1,0.
G(Z) is the system transfer function whose characteristic equation also

must be of order 20 or less. Its general form is

At alz-l + ommm + za,nZ'n ,
©2) = (%)
b + b2 + e + b Z
o X n

where n < 20, and b_ = 1.0. Any of the a, b, c, or d coefficients in
G(z) and D(Z) may be zero except b and d . The orders m and n of D(2z)
and G(Z) may or may not be ﬁhe same, The noise added to the output of

&(Z) is a random number multiplied by a varieble input parameter "k".



(z) I a(z) =

Figure 53. Block diagram of closed loop system
used in digital simulation
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D(Z) and G(Z) are each treated separately in the simulation. Taking

G¢(Z2) as an example

~1 -n
a +aZ Tt 4+ gz
Y'
6(z) = 2— P - (15)
-—- 4
b+ b2+ b 2
or
by = (aX+aXzl 4o +a @) o (b yz Ttk -o-
(o) o i n 1

+ bny'z‘n) (16)

. . r
where XZ T is X delayed one sample period and can be denoted X[ (m-1)T],
and Y'Z " is Y' delayed n sample periods and is denoted Y'[(m-n)T], etec.

"Since b =d_ = 1.0
o o)

¥ [(m)7] = (a X[(m)T] + a;X[(m-1)T] + === + & X[(n-n)T])
- (07" [(m-2)T] + === + b ¥'[ (m-n)T]) (17)

Thislequation may be used to compute the present Y' = Y'[(m-n)T], given
past Y' and past and present X.

We may note from Figure 53 that

p(ur) = amr) - Y[ (m)T] | , (8

In other words, we must know Y[ (m)T] in order to find ¢(mT). More
involved programming was circumvented by making the constraint that
a  equal zero. This constréint means that Y'[(m)T] depends only upon
past data and no longer depends upon X[ (m)T]. (This constraint merely
means that the numerator of G(Z) must be of at least one order less than
the denominator.) The sequence of computation is as follows.

(1) Compute Y'[(m)T] from past X and Y' data.
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“(2) Add noise to Y'[(m)T] to get Y[ (m)T].

(3) SubtractAY[(m)T] from.a(o) to get'¢(o). |

(%) Compute X[(m)T] from past X and ¢ date and ¢(uT).

This completes one cycle of computation. The desired values are
read out and all present and past values are shifted iﬁ storage to
simulate delaying them one more time period (20 values are kept to
accommodate up to a 20th order characteristic equation). The cycle is
repeated for the desired.number of iterationms.

The input required is lislted below.

order of characteristic equation of D(Z).

m -
n - order of characteristic equation of G(Z).

n, - number of iterations desired.

k - multiplier for noise to be added to the output.

2m + 1 coefficients - ¢ and & coefficients for D(Z)
(do assumed = 1,0), -
on + 1 coefficients - a and b coefficients for G(Z)
(bo assumed = 1.0).
The number of sets of output values is equal to the input value n,.
Each set may consist of 6ne of the two following descriptions:
X, Y - to be used later to identify G(Z) with output noise added.

&, X, ¥', ¥ - used to check out program and data.
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VIII. APPENDIX B -~ COMPUTER PROGRAM FOR LEAST SQUARES

COEFFICIENT IDENTIFICATION

This program forms a matrix of combinations of the X and Y data
which were the output from the computer program described in Appendix A.
This matrix is used to solve for the a and b coefficients of

-1 -
: 8obs T+ wwa + g 4
6(z) = —= 2 | (19)

-1 -n
1.0 + blZ L an

-

The input X is in sampled form. G(Z) is the system transfer
function as described in Appendix A. The output Y is in sampled form
with noise added.

The method used to solve for ’che~ a and b coefficients is the
method of least squares. Given an equation

0O=aX-Y+b | | (20)
the constants a and b are to be determined such that
n | .
f(a,b) = z (a,Xi - Y, + b)2 , (21)
i=1
is & minimu.m. To do this it is necessary to first square each equation
used., These are then added to form a new equation. Partial derivqtives
of the resulting equation are taken with respect to each coefficient and
set equal to zero. The set ‘of linear equations resulting from ta.king
partial derivatives is solved for the a and b coefficients.
In our specié.lized. case, by rearranging the equations used in

Appendix A, we get
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0= (aoX[ (m)T] + a, X[ (m-1)T] + === + a.nX[ (m-n)T]
- (b YL (m)T] + by Y[ (m-l)mj + -t bnY[(m-n)T]) (22)

But we have &, equal to zero and b0 equal to one. Also, to simplify

1
the notation, let n = 2, Thus

0= a.lX[ (m-1)T] + a X[ (m-2)T] - b, Y[ (m-1)T] - b¥[ (m-2)T)]

- Y[ (m)T] ' (23)
In easier notation
0 =a)v +as W - byx - by - z (24)
These equations are formed consecutively from the X and Y data. The
number of equations to be added in forming each matrix is & variable input

paranmeter. Squaring this equation gives
0= (Pa® + (P)a + (B2 + (P2 + (F) +

+ 2(vw)a.a, + 2(-vx)albl + 2(-vy)alb2,+ 2(-wx)a2b

1%2 1
+ 2(-wy)aéb2 + 2(xy)blb2 + 2(-vz)al + 2(-wz)a2
+ 2(xz )by + 2(yz )b, (25)

Taking partial derivatives and setting the results equal to zero yields
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._.a; = 2 + |
Bal =0 =2y aq 2vwa2 - 2vxbl - 2vyb'2 - 2vz
) ' 2 L
— = 0 = 2vwa, + 2w a, - 2wxb, - 2wyb, - 2wz
aa2 1 2 1l 2" (26)
3 _ . . R
—=0= - - + +
abl 0 2vxa.l 2wxa2 2x2bl 2xyb2 + 2yz
2= 0= -2vya, - 2wya, + 2xyb, + 2y°b, + 2yz
ab, 1 2 1 2
In matrix form, Equations (26) are written as
— 2 = ] —
v VW -WX =Vy 2y w2
2 ‘ .
WoW WX AWy Ay, Wz
- x = (27)
“VX ~XW xa* Xy bl -X2
-Vy =yw ¥yXx Y2 b -yz
B - B - .

This matrix equation is the output of this program. A standard "linear

equation
bl,
The

amb

and b,.

solution” program is used to solve for the coefficients a,, ay,
2
input required is given below.

amount of X and Y data to be read in,.

number of matrices to be computed.

number of equatiéns to be added together informing each matrix.

- X and Y data computed in the "Closed loop system with
compensation" program,

output will be the matrix of combinations of coefficients.
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IX. APPENDIX C - FROGRAM TO CONVERT LAPLACE

TRANSFORMS TO Z-TRANSFORMS

In principle, the procedure for finding the poles and zeros of the

Z-transform corresponding to a Iaplace transform of the form

.frl (s + a.i)q:.L
F(s) = L= — | (28)
m (s + bi) *
i=1

is fa.irly straightforward. The Iaplace transform is first expanded into

its partial fraction form, as

n ri'l K.

Ps)= % T L | (29)
i=1 j=0 (s + bi) i

and then each term is replaced by its Z-transform

K. . k
Z (30)

-biﬁT}
i Z - e

where k = r, - j -1, and T is the sampling time. It can be shown that

for k=2 1

' ~byT

. (-1)7r'e " p (2)

g 5= 5.7 (31)
. 7 -~ e 1 (Z - e 1 )k"‘l

where pk(Z) is a polynomial of the form
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-b,T -2b,T
- kel k-2 i k-3 i
= + . . .
pk(Z) Z Pk,l Z7 " e + Jek’2 277 e +
~(k-2)Db, T
k-0-1 -Qb:T ( i
+ 1 d e e +
Pk, Z e Pk,k-2 Ze
-(k-l)biT
Rkl © | (32)

in which the coefficients, 3k | » are given recursively by
3

: = = + + -
Plo=L B =W+rup , g+ (& AP g1 (33)
where 1< f < k- 1, Pk_l,o = 1, and Pk_l, x.q = 0. Thus, the

Z-transform, G(Z), of F(s) will be

n Titk o x 03T
oz)= £ * K% oy (2) (34)
i=1 =0 b, T k+L
k'(Z - e )

where k = r; - J-1 and pk(Z) are as defined above, Tﬁese fractions

can be added to give a single fraction representing the Z-transform. The
numerator of this fraction must bé found in polynomial form, and a rdot-
finder must be used to find the zeros, but the demoninator can be found
in factored form and ﬁhe poles will be e'biT for 1 <1 =< n.

A less general version'of this technique was tried. The recursive
relations for finding the p;rtial fraction cpefficieﬁts and the poly-
nomial coeffigients, I%’ , were not known at the time this technique was
tried. The compﬁted locations of the zeros were very inaccurate. Most

- of the inaccuracy appearéd to be due to the round-off error in the

formation of the coefficients of the numerator polynomial, but the
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inability of the rootfinder being used at that time to accurately find the
roots of & polynomial having~some of its roots nearly equal probably
contributed to the error alsb. Consgquently,'several non-standard
techniques were empl§yed in the final program to enablé the zeros to be
found accurate to 5 places using 8-place floating point arithmetic, which
was all that was conveniently available,

One of the techniques used to improve accuracy was to avoid the
computation of the coefficients of the numerator polynomial. Th;s was
done by computing the partial fraction expansion of the Z-transform
fraction. The numerator, evaluated at a given value of Z, can then
be computed by multiplying the partial fraction expansion times the
denominator, both evaluaﬁed at Z.

The Z-transform partial.fraction expansion coefficients are
computed as follows:

The Laplace transform is assumed to be in the form of

Equation (1), except the ry are restricted to the range

1< r; = 3, and the partial fraction expansion of the

Laplace transform is given by Equation (29). The first partial

fraction coefficient corresponding to a given pole (and the

only coefficient for a first degree pole) is given by

; (-b; *+ ak)qk
K0 = - (35)
m (b, +b) "

k=1
k#i




e

The second coefficient for a second degree pole and the second

and third coefficients for a third degree pole are given by

R % Tk
K17 %0 [kfl Do, *ay kfl Do, * b ]
k#i
_ T "% | - Ty
o =K o[ = 5 - I 5
L LY k=1 (-b, + 8, )" k=Ll (-b; + by)
k#i
m q. n r
K kK 2
HR v vl
k=1 k k=1 k
kA

The Z-transform, G(Z), is obtained by replacing each term in

Equation (29) by its Z-transform. Thus, the following sums

of terms
-biT
K., \Z K. ZTe K, .2
,0 _i,0 + 1
-biT ? -b.T > -b,T ?
Z - e (z-e ) Z-e
and
1 > -biT -biT 'biT
= K., .2T% (Z + e ) K. .ZTe K. ,Z
2 1,0 b 1,1 + i,2
-biT 3 'biT 5 ,-biT
(2 - e ) (2-e 7)) Z-e

correspond to a first, second, or third degree pole

respectively.

(36)

(37)
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Since Z is common to the numerator of all terms of a(z)
n Tt H '
6(z) =Z[ £ = 2. ]
i=1 j=0 'biT r.=J
(Z-e ™)

The coefficients, Hi.j’ are as follows
H

for a first degree pole: H, =K

i,0 i,0
' 'biT
for a second degree pole: Hﬁ’o = Ki,OTe ’
Biv%,
_ > -2biT
for a third degree pole: Hi,O = Kﬁ,OT e ,
1 -biT
Hy1= (& 1 5K e 7
Hi,2 - K1,2

Obviously, Z = O is a zero of every G(Z). The rest of the zeros

will be roots of the expression

n Tt ow n b.T 7,

(z = 1, Yx m(2-e * )7
i=1 j=0 o, Tr, o dmL |
(Z-e =) %9

The degree of this expression is one less than the degree of the

(38)

(39)

(k0)

(41)

(42)

Z-transform (and Laplace transform) denominator. When the degree of the

Leplace transform numerator is less than one the degree of the Iaplace

transform denominator less one, then the coefficient of the highest order

term of Equation (42) is zero. However, when round-off errors in the

computation of the Hi 3 are considered, this coefficient may not be
b
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exactly zero. In this case it is advantageous to reduce the degree of
e ' . g

Equation (42) by one. T%is is done by multiplying the partial fraction
_ : 55 ~b. T o
expansion in Equation (38) by (Z - e L ) and by subsequently dropping

the first pole if it is simple, or by reducing ry by one if it is not.

The new values of Hi j are computed as follows
> .

Ho=H x(e-biT - e'bl'T) YE |  (4)
i,J i,d i,J-1
for j =1, . * ", 1y 4 and taken in decreasing order,
' -'biT --b2'l1 _ .
B0 H g%t o-e 2) | ()

When a root has been found at Z = X, it is divided out of the partial

fraction expansion by modifying Hi j as follows
2

5o '
D amm———a———
5,01 A (+3)
e -~ X
and
5 J '.Hi j-1 6
= 2 P X0 Al
T B | (46)
et -X ’

for =1, ¢+, r; - 1, and taken in increasing order. Then. another pole
is multiplied out in the same mammer as shown abox}e, and the process is
continued until all the roots h ve been found.

The rootfinder used is.a. modified version of one that was
originally written for the Illiac and was subsequently a.daﬁted for the
Cyclone. .The rootfinder was modified to keep a éopy of the original
polynomia.l as well as the reduced polynomial from which the previously

found roots had been divided. When a value of Z is found which satisfies
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the reduced polynomial, that value is inserted into the original poly-
nomial to determine whether it is also satisfied. In cases in which
the original polynoﬁial is not satisfied, othe: values of Z near to this
value are tried in a systematic way until oﬁe is found which does
satisfy the original polynomial. This technique prevents the accumu-
lation of errors which results when an inaccurately known root is divided
out of the polynomial thereby changing the value of all subsequently
found roots. Also, a technique was devised for finding a raot to a
given number of places of accuracy relative;yvindependent of the
distance of the root from all other roots. If f(Z) is a polynomial in
Z having roots at Tys Tos ¢ 0t Tps then at any given value of Z, —
I.\‘.'(Z)|\2 is equal to iEl‘Z - ri|2. Suppose that the sequence of trial
roots, Z, generated by the rootfinder is approaching the rbot Tqs and
suppose that the criterion for ending iteration is that the distance
froﬁ Z to Ty should be léss than some small number 6. Then thé |
iteration should cease when |f(Z)|2 is less than or equal to

62 . i§2lz - ri[2. The varisbles BDH and SMAR in the rootfinder (see
the program) are estimates of igalz - ri|2 for the reduced and original
polynomials respectively, and these estimates improve as Z approaches a
root. Thus the criterion for ending iteration is lf(Z)]2 less than or
equal to 62 - (BDH) or If(Z)'2 less than or equal to 82 - (SMAR).

The program is shown in Figure 54.
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1

2

e
700
701
702

703
7Ok

o O

w

0o o

20

o o
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array AAR[60], AAT[60], BBR[60], BBI[60], CCR[60],
cCcI[60]

array DDR[60], DDI[60], TA[20], 1IC[20], JD[EO]

array " ZrR[20], zPI[20], RR[60], RI[60]

read T

if (1) 1,1,2

stop

continue

clock TINVE

read T

if (T-1) 700,704,702 _

do 701 1=1,60

RR[I]=RI[I]=0

go to 704

read IR

do 703 I=1,1IR

read RR[I1, RI[1]

read E1,E2

E1=R1s81; E3=R2+82; El=5x32

coded 3

erlf 3

n=1

read ST, R, IIA

do 3 1=1,IIA

read IA[I], AAR[T], AATI[I]

N=N+IA[I]

read ID

do 4 I1=1,I -

read m{I], DDR[I], DDI[T]

N=N-ID[I]; T=exp(-DDR[I]%ST); THETA=-DDI[I]xST
TR=ZFR[ I] =cos (THETA )#T; TI=ZPI[I]=sin(THETA )T

Ixn
out
punch

M=1

I,
D,1,010
™, TI, /

¢ compute Z transform partial fraction expansion

do 28 L=1,1ID
SR=-DDR[L]; SI=-DDI[L]; FZR=1; FZI=0
ts% ¥210,5

tsx% 2130 6

T=F7R FZR+FZIRFLT; FZR=FZR/T, FZI==FZ1/T
tsx 2200,5

tsx 2130,6

if (m[r]-2) 26,24,25

Figure 51} .

Z-transform computer program
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26
28

80

BBR[M] =(FZR «ZPR[L] =FZIxZPI[L] )*ST
BBI[M] =(FZR xZPI[L] +FZI+ZFR[L] )»ST; M=M+1
FIR=FNI=0; INT=1

tsx 2210,5
tsx 2170 6
FIR=-FNR; FNI==FNI

Tsx 2200:5
tsx 2170,6

BBR[ M] =FNR sF'ZR ~FNI«FZ1; BBI[I\"] FINRFZI+FNIEFZR ;. M=M+]
go to 28

TR=ZPR[L] ; TNI=ZPI[L]; TR=TNR«TNR=-TNIxTNI

TI=2¥TNR¥INI; T=ST*ST; BER[M] =(FZR «IR-FZI«TI )«T

BBI[M] =(FZR«TI+FZIXIR )¥T; M=pH+1 -
FNR=FNIFWR=FWI=0; INT=2

tsx ' 2210,5
tsx 2170,6
FMR=-FNR; FNI=-FNI; FWR=-FWR; FWI=-FWI;
tsx 2200,5
tsx 2170,6

TR=ST/2+FIR; TI=FNIXTIR-+VIR«TNI; TR-']IR*TNR-FNI*TNI

BBR[ M] =(TR#FZR ~TI+FZI )»ST; BBI[M] =(TRFZI+TTFZR )»ST; M=M+1
TR=FIR +FIR ~FNIFNI+FWR; TI=2:FNRFNI+HWI

BBR[M] =£(3an ¥IR=FZI¥TI)/2; BBI[M] =(FZR #TI+FZI«TR )/2; M=M+]
go to 2

BBR{M] =FZR; BBI[M]=FZI; M=M+1
continue
IBB=M=-1; IBB=LID=I]

¢ compute K

13
L

e

15
16

[¢]

7

if (§) 14,15,1

continue

L8X o 2250,6
M=IBB~1; SR=0 :

do 16 1L=LID,IID

M=M+ID[L); SR=SR+4BBR[M]}; IA[L]=IC[L]=m[L]

R=RxSR; LAA=ICC=IBB; LIC=LIA=LID; IR=0; IIA=]

punch /s Ry

do 17 I=I8B,IBB

AAR[ 1] =BBR[ 1] =CCR[ 1] =8BR[ 1% /SR, AAI[1]=8BI[I]=CCI[I]=3BI[I]/SR
trss] 3ok

tru *+7

tab | 1

punch | . BEr[I], BBI[I], /
convinue

7=0

 Figure 5k (Continued)



200
201
e

210

211
e

8L

punch [ T T, /[

go to 50

¢ lozd numerator
IIC=ITA; K=0
do 201 I=1,IIA
Ic[1]=1A[1]; CCR[I]#\AR[I], CCI[I] =AAT[ T]
tru _ ,5

¢ load denominator
IIC=IID; K=L _
do 211 I=1,ID
1c{1)=10[1); CCR[I]=DDR{I}; cCcI[I]=DDI[I]
tru 1,5

¢ mltiply faectors

130

132
134

135

e

do 135 ' I=1,IIC

if (I-K) 132,135,132 |
J=IC{1]; TR=CCR[I]+SR; TI=CCI[I]+SI
T=RZRATR<FZI¥TIL; FZIFZR+TIHFZI¥IR; FZR-T
J=J=1

if (J) 1,135,13k

continue

tru 1,6

¢ subroutine for taking derivetive

170
174
181
176

e

do 176 I=1,IIC

if (I~K) 174,176,174

TR=“CR[I]+SR, TI=CCI[I] +S1; T=TR«TR+TI«TI; 'IR-‘]ZR/T, TI—-'J.‘I/T
ACCR=IC[I] #TR; ACCI=IC[ I]«TI; FI\TR%“NR-I-ACCR, FNI=FNI4ACCI

if (INT-Q) 176,181,1 ‘

Fh ’R‘F"JR-(ACCR-)LTR -ACCI*'FI) F'»II=FWI-(ACCR*TI-IACCI*’]R )
continue

tru 1,6

¢ subroutine for mltiplying out pole

250
253

251

252

SR=ZFR[LID]; SI=ZPI[LIM]; M=IBB; L=IID
TR=ZFR[L] -SR; TI=ZPI[L]-5I; J=ID[L]-1
ACCR=BBR[ M] #*TR-BBI[M] #TI; ACCI=RBR[M] #TI+BBI[M] IR
do 251 - I=1,J0
TAR=BBR[M~1]; TWI=BBI[M=~1]

BBR[ M] =ACCR+TWR ; BBI[M]=ACCI+TWI; M=M=1
ACCR =TWR TR =T/ I¥TI; ACCI=TWR«TI+TI¥TR
BBR[ ¥ sACCR; BBI[M] =ACCI; M=M=~

if (L'LID) 1;25)"';252

L=L~-1

go to 253

Figure 54 (Continued)
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254 IBB=IBB+1; ID[LID]=D[LI]~1
if (m[LD]) 1,255,256

255 LID=LID+1

256 continue _

e. tTru . 1,6

¢ find roots

50 ERRMR=E3

e tsx 2109,5
go to 609

609 IR=IR+1; RR[IR]=XR; RI[IR]=XI -
punch © XR, XI, SR, SI, /

e trss2 x42

e tru *+T7

e mode 3 :
punch /, W, XI, /

e mode 2 .

if (LBB~IBB+1) 615, 710, 1

710 continue
e clock
e sub TIME
e crlf ' 1
e out 5,030
e crlf 1
e tru 227
5 ERRR=E1
e  tsx 2525,5
e  tsx 2109,5
go to 6
go to 630
6 continue
e  tsx 7520,5
e  tsx 2540,5
XMR=XR; XMI=XI; FWMR=SR; FWMI=SI; SML=R; INT=4
e  tsx %120,6
if ((HR*HR+HIxHI)/XSQ-E3) 625, 625, 7
T HR==HR; HMI=-HI )
e  tsx %540,5
FNMR=SR; FNMI=SI
if (R-SML) 8, 8, 9
8 SML=R; INT=3
9 continue
e  tsx Y525,5
e tsx 2535,7
e  tsx 25,6

FWR=SR; FWI=SI

Figure 54 (Continued)
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e tsx 2111,6
e  tsx 2120,6
R=IR +BR+HI+HI

if (R/XsQ-E3) 620, 620, 10

10 AM=-(EMR*HR+HMI«HI )/R; AMI=(HMR*HI-EMIxRR )/R
DR=AMR+1; DIAMI :

608 continue %

e tsx 20,5

e  tsx’ . 7540,5
FZR=SR; FZI=SI; FNR=FNMR; FNI=FNMI; FWR=FWMR; FWI=FWML
if (R=SML) 11, 11, 12

11 SML=R; INT=1 . .

12 R=HMR; HI=HMI; XR=XMR; XI=XMI; ERRQR=E3

e tsx 2533,7
e  tsx 2150,5
go to 609
go to 609 : .

620 AMR=sqrt ((HVR«HMR+HMI«HMI )/XSQ ) /=2

621 AMI=DI=0; DR=AMR+1; T<DR/AMR
XR=XMR~T*HMR ; XI=XMI~T%HMI
go to 608

625 HMR=sqrt(XSQ )«E2

626 EMI=0; XR=XMR~HMR; XI=XMI

e  tsx 2540,5
FNMR=GR; FNMI=SI
if (R-SML) 627, 627, 628

627 SML=R; INT=2

628 AMR=-0.5
go to 621
630 HMR=sqri(Xsq )«E2
e tsx 2520,5
e  tsx 7540,5
XM3=XR; XMI=XI; FWMR=SR; FWMI=SI; SML=R; INT=3
" go to 626 '
¢ divide by root and multiply by pol
615 M=IBB :
do 617 L=L1D,IID

TR=ZFR[L] -XR; TI=ZPI[L]}-XI; SR=SI=0; J=ID[L]+M
T=TR ¥[R+TI«TI; TR=TR/T; TI=-TI/T
616 SR=BBR[M] =SR; SI=BBI[M]=SI; T=SR#TR=SI#TI
SI=BBI[M] =SR«TI+SI«TR; SR=BBR[M]=T; M=M+1
if (M=J) 616,617,1
617 continue :
e  tsx 2250,6
- 1if (11A) 619,1,614

Figure 54 (Continued)



619 1IIA=]
613 continue
e trss] *+2

e Tru 25
do 618 M=IEB, IBB

e tab ) ]

618 punch BER[M], BBI[M], /
go to 5

61 if (meg(XI)-Elk) 613,613,612
612 ITA=-1; XI==XI
go to 609

c rootfinder subroutine
109 N=IR+1; XR=RR[N]=1; XI=RI[N]

e  tsx 25,6
FZR=SR; FZI=SI; XR=RR[N]+]
e tsx 25,6
FNR=SR; FNI=SI; XR=RR[N] -
e tsx ' xibs,6
FWR=SR; FWI=SI; AM==0,5; DR=0.,5; HR==1; AMI=DI=HI=0
R=m+08
go to 149

48  ir (INT~1) 1, 49,110
L9  TAMRAMAMAM; TR=-(DR*AMDIAM )/T
AMI=(DR:AMI-DIAMR )/T; AMR=TR

e tsx 2530,7
SR=F7R; SI=FZI .
e tsx 2535,7

FWR=SR; FWI=SI; INT=3; R=SML
110 continue
e  tsx , 2111,6
if (R-BDH#ERR®R ) 60, 60, 119
119 continue :
e  tsx , 2120,6
. if ((RR+HI«HI)/XSQ~-p-16) 61, 61, 148
148 continue
e  tsx 2535,7
e tsx 215 ,6
FYR=SR; FWI=SI
150 R=FWR#FWRHFWILFWI :
if (R-SML) 149, 149, LB
9 SML=R; INT=3

go to 110
60 continue
e tru 1,5
61  continue ]
e tru 2,5

Figure .54 (Continued)
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¢ subroutine for evaluating Z transform expansion
145 continue

e trss] 21L0+2
e stz SR

e stz SN

e 1xn 1CC,3

e Ixn Im,2

e sxd Xikh+1,2
e  sxd 2139+1,2
139 continue

e Ixn 1IC,2

e txh : 21k, 2

e cla AR

e sub ZFR,2

e sto A ™

e cla XTI

e sub ZPI,2

e sto TI

e ml TI

e sto b=l

e cla TR

e ml i

e add Yt~1

e sto T

e sub : E3

e  trp 2138

e cla CCR,3

e sto SR

e cla cC1,3

e sto S

e txd *+1,2,1
e sxd : *+3,2

e  swp 542, , L1kk+1
e tru puinn

e txh %+1,2

e  swep PRLHES PR
e  txi Tikb+1,2,1

138 TR=TR/T; TI=-TI/T

e cla IC,2

e 1xn P

e cla CCR,3

e sto ACCR

e cla CCI,3

e - sto ACCI

e  txi Xik7,3,1

146 continue
Figure 54 (Continued)
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e add CCR,3

e sto ACCR

e cla ' ACCT

e add cCI,3

e sto ACCI

e txi 2147,3,1

147 continue

e ml ™

e  sto Le=1

e cla ACCR

e mil TI

e add ' Yt-1

e sto T

e cla ACCI
e ml ; TI

e sto . Yo=1

e cla ' ACCR

e ml : ™

e sub Yt=1

e sto : ACCR

e copy : T, ,ACCI
e  tix 26,h,1
e add : SR

e sto SR

SI=BI+ACCI

e txi 2139+1,2,1
4L continue

e Ixn LIC,2

e  txh 2140,2
e cla Ic,2

e lxn ' S

e cla R

e sub ZER,2

e sto N TR

e cla XTI

e sub ZPI,2

e

~ sto _ ' TI

142 continue

e cla sI

e ml TI

e sto i~
e cla SR

e ml ™

e sub . - Yi=1
e

sto T

Figure 5 (Continued)
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cla SR
ml TI
sto ‘ 2t=1
cla 4 SI
ml TR
- add | 2t=1
sto ' SI
copy . T, ,SR
tix Zil2+1,4,1
txi Llkh+1,2,1
continue
trssi *+6
tru 1,6
tab 1
punch XR,XI
tru L1h5+1
punch "SR,SI,/
tru _ 1,6

¢ load original polynomial

520

521
e

1CC=IAA; LIC=LIA; Ic[1I]=IA[LID]

do 521 M=LAA,IBB
CCR[{M] =AAR[M]; CcCI[M]AAI[M]
tru 1,5

¢ load reduced polynomial

525
526
e

.530

533

531
532

e
535
e

LCC=IBB; LIC=LID; IC[LID]=ID[LID]

do 526 M=IBB , I5B
CCR[M] =BBR[M]; CCI[M]=BBI[M]
tru 1,5

DR=T+AMR; DI=AMI; T=IR+AMR~HI+AMI;
HI=HRAMI+HIsAMR s IR=T; XR=XR+HR; XIXI+HI
X5Q =R «XRAXIRXI

if (XsQ-E3) 531, 532, 532

X5Q=E3

continue

tru 1,7

FZR=FNR; FZI=FNI; FNR=FWR; FNI=FWI; INT=INT=1

- tru 1,7

TIMS=TIME
end

Figure 54 (Continued)
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